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This note describes an interesting open problem in the statistical theory of multiclass classification. The
problem is easy to state, but seems challenging to solve, so I thought it would be good to get some more
eyes on it. ,

Please don’t hesitate to contact me at shashankssingh44@gmail.com with ideas or questions.

Background: The binary case A famous result in the theory of binary classification states that accuracy
(i.e., the proportion of samples labeled correctly) is maximized by the “Bayes” classifier

ŶBayes(x) =

{
0 if η(x) ≤ 0.5
1 if η(x) > 0.5

, (1)

where η(x) := E[Y |X = x] denotes the true probability that a sample with covariate x lies in class 1.
Although η is unknown in practice, this result motivates a simple recipe for binary classification: estimate
the conditional class probability η (e.g., using logistic regression, random forests, nearest neighbors, or
something else), and then threshold this estimate at 0.5.

In many real-world classification problems, accuracy is a poor measure of performance; classifiers with
high accuracy may fail to distinguish the classes well. For example, if Class 0 is generally more common
than Class 1, such that supx η(x) ≤ 0.5, then the Bayes classifier will classify all inputs as Class 0. A host
of alternative performance measures, such as precision/recall, Fβ scores, AUROC, AUPR, etc., have been
proposed. However, theoretical results for classification in terms of these more general performance measures
are quite limited. Notably, it is not clear when thresholding an estimate of η performs well in terms of general
performance measures. Theorem 3 of Singh and Khim [2021] showed that optimizing general measures of
binary classification performance is not always possible with deterministic classifiers (which always predict
the same label for a given covariate value), but may require stochastic classifiers (which may guess a class
randomly for some covariate values). In particular, we showed that there always exists an optimal stochastic
classifier of the form

Ŷp,t(x) =

 0 if η(x) < t
Bernoulli(p) if η(x) = t

1 if η(x) > t
, for some p, t ∈ [0, 1]. (2)

For most values of η, Ŷp,t returns a deterministic class, but when η(x) = t, Ŷp,t guesses Class 0 with
probability 1 − p and Class 1 with probability p. Similar to (1), this motivates a simple recipe for binary
classification under more general performance measures: estimate the conditional class probability η, and
then threshold this estimate at a threshold (p, t) ∈ [0, 1]2 that optimizes training performance. Proving this
result (see Appendix A of Singh and Khim [2021]) was surprisingly challenging, involving an elementary but
non-trivial degree of measure theory.

Open problem: The multivariate case Understanding performance in terms of general performance
measures is especially important in multi-class classification, where class imbalance is the rule and accuracy
is rarely used. However, it is not clear to me how to generalize the above problem to the multiclass case; in
particular, it is not clear to me what form the optimal stochastic multi-class classifier should take. Does the
number of random parameters p needed scale linearly with the number k of classes? Or with the number of
pairs of classes? Or with the number of possible subsets of classes?
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