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Abstract
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Table 1: Notation used throughout this thesis, sorted alphabetically. ∗ indicates typical
usage of this notation, with some exceptional uses in specific sections.

Notation Semantic Meaning
B bound on |g′′p(α)| (Appendix B only)
Bp bias of p̂ at a point
Cγ general Hölder space of exponent γ
Cγ
L,r bounded Hölder space

d dimension of unit cube [0, 1]d

Dα Rényi-α divergence
D̂α plugin Rényi-α divergence estimate
D
~i mixed partial derivative indexed by~i

f integrand of density functional∗

F density functional∗

gp function such that limα→1Hα(p) = g′p(α)
∣∣
α=1

(Appendix B only)
H Shannon entropy
Hα Rényi-α entropy
~i multi-index in Nd

Iα Rényi-α mutual information
Îα plugin Rényi-α mutual information estimate
k number of probability densities p1, · · · , pk
K smoothing kernel
` l = bβc greatest integer strictly less than β
L multiplicative Hölder constant
n sample size
p a probability density function
p̂ clipped mirrored kernel density estimate of p
p̃ mirrored kernel density estimate of p
q reference probability density function for Renyi-α divergence
X, Y, Z random variables taking values in [0, 1]d

X domain of density, typically [0, 1]d

α Rényi-α parameter
β density smoothness parameter
γ Hölder condition exponent
κ1 positive density lower bound
κ2 density upper bound
Σ(β, L, r, d) bounded Hölder space on [0, 1]d with vanishing boundary derivatives
ξ intermediate point in domain (from Mean Value or Taylor’s Theorem)
� asymptotic order (i.e., big-Θ)
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Chapter 1

Introduction

In this thesis we study the convergence of a certain estimator of density functionals. In gen-

eral, let X be an absolutely continuous (with respect to Lebesgue measure) d-dimensional

random vector with Radon-Nikodym derivative (henceforth, “density”) p : X ⊆ Rd → R.

Given a function f : R → R and a real function space S over X in which p lies, we are

interested in estimating the integral functional

F (p) :=

∫
X
f(p(x)) dx (1.1)

(again, the integral is with respect to Lebesgue measure, which is used henceforth always

as the reference measure). For simplicity, we refer to functionals such as (1.1) as “density

functionals”.

In our framework, we assume that the underlying density p is not known explicitly.

Only a finite, independent and identically distributed (i.i.d.) sample is given from p. In

addition, f , X , and S (typically a Hölder, Sobolev, or similar space) are known.

Our main contribution is to derive error bounds, including an exponential concentra-

tion bound, for a particular consistent, nonparametric density functional estimator. We also

apply our estimator to derive error bounds for estimating certain functionals arising from

information theory.
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Organization

In the remainder of this chapter, we discuss some applications motivating our study of den-

sity functionals, and also survey related work. In Chapter 2, we present our main theoretical

results, first discussing the special motivating case of Rényi-α divergence, and then proving

a general result and applying it to Rényi Conditional Mutual Information. Finally, in Chap-

ter 3, we conclude by summarizing our work and discussing potential directions for future

work. In Appendix A, we present the results of numerical experiments conducted to verify

the performance of our estimators. Finally, Appendix B presents an analytical observation

that may allow extension of results on Rényi-α information-theoretic quantities to Shannon

quantities.

1.1 Motivations

1.1.1 Divergences

There are several important problems in machine learning and statistics that require the

estimation of the distance or divergence between distributions. In the past few decades

many different kinds of divergences have been defined to measure the discrepancy between

distributions, including the Kullback–Leibler (KL) [15], Rényi-α [32, 33], Tsallis-α [39],

Bregman [6], Jensen–Shannon [22], Lp, and Csiszár’s-f divergences [8], maximum mean

discrepancy [5], and many others. Under certain conditions, divergences can estimate en-

tropy and mutual information. Entropy estimators are important in goodness-of-fit testing

[9], parameter estimation in semi-parametric models [41], studying fractal random walks

[3], and texture classification [11, 12]. Mutual information estimators have been used in

feature selection [28], clustering [2], optimal experimental design [21], fMRI data process-

ing [7], prediction of protein structures [1], and boosting and facial expression recognition

[34]. Both entropy estimators and mutual information estimators have been used for in-

dependent component and subspace analysis [18, 37], as well as for image registration

[16, 11, 12]. For further applications, see [20].

A particular divergence estimation application of interest is Distribution-Based Ma-
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chine Learning. Many applications call for representation and analysis of ‘distributional’

data sets where each data point is a collection of samples from a high dimensional distribu-

tion (as opposed to valuations of a typically vector valued random variable). In this setting,

each data point can be modeled by a collection of distributions, one for each measured

attribute. Using divergence estimators one can develop machine learning algorithms (such

as regression, classification, and clustering algorithms) that can operate on distributions

[31, 26].

1.1.2 Renyi-α Information-Theoretic Functionals

A primary motivation for studying density functional estimators is the estimation of Rényi-

α information theoretic quantities. These include Rényi-α entropy, Rényi-α divergence,

Rényi-α mutual information, and Rényi-α conditional mutual information. Rényi-α diver-

gence contains the Kullback–Leibler divergence as the α → 1 limit case and can also be

related to the Tsallis-α, Jensen-Shannon, and Hellinger divergences. Many information

theoretic quantities (including entropy, conditional entropy, and mutual information) can

be computed as special cases of Rényi-α divergence.

Although many of the above mentioned divergences were defined decades ago, many

questions about the properties of their estimators remain open. In particular, rates of con-

vergence are largely unknown, and no finite sample exponential concentration bounds have

been derived for divergence estimators. Hence, one of the primary novel applications of

our work is the derivation of an exponential concentration bound for a particular consistent,

nonparametric, Rényi-α divergence estimator.

1.2 Related Work on Information-Theoretic Functionals

Probably the closest work to ours is that of [23], who derived an exponential-concentration

bound for estimators of one- and two-dimensional Shannon entropy and mutual informa-

tion, over a class of densities obeying a specific Hölder condition.

To the best of our knowledge, only a few consistent nonparametric estimators exist for

Rényi-α divergences: [30] proposed a k-nearest neighbour based estimator and proved the

10



weak consistency of the estimator but did not study the convergence rate of the estimator.

[40] provided an estimator for the α → 1 limit case only, i.e., for the KL-divergence.

They did not study the convergence rate either, and there is also an apparent error in this

work; they applied the reverse Fatou lemma under conditions when it does not hold. This

error originates in the work [14] and can also be found in other works. Recently, [29]

has proposed another consistency proof for this estimator, but it also contains some errors:

the strong law of large numbers is applied under conditions when it does not hold and

almost sure convergence of an entire sequence is used in a case when only convergence in

probability is assumed. [11, 12] also investigated the Rényi divergence estimation problem

but assumed that one of the two density functions is known. [10] developed algorithms for

estimating the Shannon entropy and the KL divergence for certain parametric families.

Recently, [25] developed methods for estimating f -divergences using their variational

characterization properties. They estimate the likelihood ratio of the two underlying den-

sities and plug that into the divergence formulas. This approach involves solving a convex

minimization problem over an infinite-dimensional function space. For certain function

classes defined by reproducing kernel Hilbert spaces (RKHS), however, they were able to

reduce the computational load from solving infinite-dimensional problems to solving n-

dimensional problems, where n denotes the sample size. When n is large, solving these

convex problems can still be very demanding. They studied the convergence rate of the

estimator, but did not derive exponential concentration bounds for the estimator.

[35, 17, 4] studied the estimation of non-linear functionals of density. They, however,

did not study the Rényi divergence estimation and did not derive exponential concentration

bounds either. Using ensemble estimators, [36] derived fast rates for entropy estimation but

did not investigate the divergence estimation problem. [20] and [9] considered Shannon and

Rényi-α entropy estimation from a single sample.1 Recently, [27] proposed a method for

consistent Rényi information estimation, but this estimator also uses one sample only and

cannot be used for estimating Rényi divergences. Further information and useful reviews

of several different divergences can be found, e.g., in [39].

1The original presentations of these works contained some errors; [19] provide corrections for some of
these theorems.
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Chapter 2

Theoretical Results

In this chapter, we present our main theoretical results concerning error bounds for a density

functional estimator, along with proofs of these results. This work began with an attempt

to derive error bounds for an estimator of Rényi-α divergence. We then generalized the

methods used in the Rényi-α divergence case to derive bounds for a more general class of

density estimates, and also applied these general results to the case of Rényi-α Conditional

Mutual Information, which has important applications.

Although the results for the Rényi-α divergence case are special cases of the results for

general density functionals, in order to motivate the general case, and to portray the work

as it developed, after introducing some notation in Section 2.1, we begin by presenting the

Rényi-α divergence case in Section 2.2. We then proceed to present the general case and

the application to the Rényi-α Conditional Mutual Information in Sections 2.3 and 2.4,

respectively.

2.1 Notation

Multi-indices: We use the notation of multi-indices common in multivariable calculus. As

a reminder of this notation by example, for analytic functions f : Rd → R,∀x, y ∈ R,

f(y) =
∑
~i∈Nd

D
~if(x)

~i!
(y − x)

~i,

12



where Nd is the set of d-tuples of natural numbers,

~i! :=
d∏

k=1

ik!, (y − x)
~i :=

d∏
k=1

(yk − xk)ik

and

D
~if :=

∂|
~i|f

∂i1x1 · · · ∂idxd
, for |~i| :=

d∑
k=1

ik.

We also use the Multinomial Theorem, which states that, ∀k ∈ N, x ∈ Rd,

(
d∑
j=1

xj

)k

=
∑
|~i|=k

k!

~i!
x
~i. (2.1)

Measures: It should also be assumed that all reference measures (for integration,

Radon-Nikodym differentiation, etc.) are Lebesgure measure, unless otherwise specified.

Bounded Hölder Space: For a fixed bounded domain D ⊆ Rd and β ∈ (0, 1], it is

common in analysis to work over the linear space of (uniformly) β-Hölder 1 continuous

functions:

Cβ(D) :=

{
f : D → R s.t. sup

x 6=y∈D

|f(x)− f(y)|
‖x− y‖β

<∞
}
. (2.2)

(since finite-dimensional norms are equivalent, the choice of norm on Rd is irrelevant). It

is useful but perhaps less common to consider the following generalization: for β > 0 and

` := bβc is the greatest integer strictly less than β,

Cβ(D) :=

f : D → R s.t. , sup
x 6=y∈D
|~i|=`

|D~if(x)−D~if(y)|
‖x− y‖(β−`)

<∞

 .2 (2.3)

1α is more commonly used than β for the Hölder exponent. Here, we reserve α for the Rényi-α parameter,
although these quantities are related (for example, for α ∈ [0, 1), Rényi-α entropy is in some sense precisely
α-Hölder continuous).

2Despite the potential notational confusion with the use of Ck as the space of k-times continuously differ-
entiable functions in the case that β is an integer, we use the notationCβ , common in nonparametric statistics,
rather than the notation C`,β , common in analysis, for the appropriate Hölder spaces. The statistical notation
emphasizes the role of β in our context as a continuous parameter (as opposed to emphasizing the number of
available derivatives, `), and is more natural for expressing, for example, our bias convergence rates (O(nβ),
as opposed to O(n`+β).
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i.e., functions whose derivatives of order ` all exist and are (β−`)-Hölder continuous. 3 By

Taylor’s Theorem, this condition is equivalent to requiring the order ` Taylor approximation

of f centered at x to have error of order O(‖y − x‖β) at y. This property makes this

generalized Hölder class very convenient for proving error bounds, and, furthermore, this

class is sufficiently large for many interesting applications. Since we are interested proving

in numerical finite-sample bounds rather than simply proving convergence, it is necessary

to assume some numerical bounds on the class of functions. Thus, we work with density

functions in a bounded subset of a generalized Hölder space. 4 In particular, for a fixed

L ≥ 0 and r ≥ 1, we work within the class

Cβ
L,r(D) :=

f : D → R s.t. , sup
x 6=y∈D
|~i|=`

|D~if(x)−D~if(y)|
‖x− y‖(β−`)r

≤ L

 . (2.4)

Note that, because L is arbitrary and, for and r ≥ 1, any f ∈ Cβ is in Cβ
L,r for sufficiently

large L, the restriction to Cβ
L,r is superficial, and is essentially to fix a value of L. Due to

the fixed choice of L, Cβ
L,r(D) is not a linear space. However, Cβ

L,r(D) is convex (this will

be important for using the Mean Value Theorem).

Vanishing Boundary Derivatives: One of the primary complications in our work is

that we work with random variables taking values in a bounded domain (see Section 2.5

for further discussion of the reasons for and consequencess of this). Due to sparsity of

data near the boundary, we must perform some sort of boundary correction to reduce the

bias of our estimator near the boundary. We choose to do this by reflecting our data set

across each boundary and assuming the density function is approximately constant near the

boundary. In order to do this is a reasonably simple manner, we specifically work over the

unit cube [0, 1]d. We cast our assumption of a density function that is roughly constant near

the boundary in terms of derivatives vanishing near the boundary. Hence, we define the

3simply considering β > 1 without differentiating is unhelpful, as it is easy to show that, ifD is nice (e.g.,
open and connected), Cβ(D) as in equation (2.2) contains only constant functions when β > 1.

4Since, eventually we are interested in estimating an integral, we may allow the the density to violate
the Hölder and boundedness conditions on null sets; that is, as is typical in probability theory, we identify
densities which differ on sets of Lebesgue measure 0.
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bounded Hölder class with vanishing boundary derivatives:

Σ(β, L, r, d) :=

{
f ∈ Cβ

L,r([0, 1]d) : max
1≤|~i|≤`

|D~if(x)| → 0 as dist(x, ∂[0, 1]d)→ 0

}
,

(2.5)

where

∂[0, 1]d = {x ∈ [0, 1]d : xj ∈ {0, 1} for some j ∈ [d]} (2.6)

is the boundary of [0, 1]d.

Higher-Order Kernels: Our first step in estimating Rényi-α is to estimate each density

function using kernel density estimation. This can be viewed as smoothing the data set,

represented as a uniformly weighted sum of point (Dirac delta) distributions, by convolving

it with a smooth kernel function Kd : Rd → R (similar to mollification in analysis) 5 .

For simplicity, we assume K is supported in [−1, 1], and, in order for the result to be a

probability density function, the kernel ought to have unit mass. Another useful property

is having ` orders of symmetry (this will allow us to drop ` terms from a certain Taylor

approximation, a key step in bounding the bias of our estimator). In particular, we assume

∫ 1

−1
K(u) du = 1, and

∫ 1

−1
ujK(u) du = 0, ∀j ∈ {1, . . . , `}. (2.7)

The existence of such kernels is not immediately apparent. However, they can be con-

structed in terms of Legendre polynomials (see section 1.2.2 of [38] for such a construc-

tion). If ` ≥ 2, then such a kernel will necessarily be negative on a set of positive Lebesgue

measure. It is possible that the kernel density estimator arising from using such a kernel

will take negative values. However, taking only the positive part of the estimator will not

increase the error, since the density is non-negative.

5To clarify our notation, Kd will denote the d-dimensional product kernel based on K : R→ R, defined
by Kd(u) =

∏d
j=1K(uj),∀u ∈ Rd.
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2.2 The Rényi-α Divergence Estimation Case

Here, we discuss the case where the density functional is the Rényi-α divergence, as in-

troduced in Section 1.1. After formally introducing the Rényi-α divergence estimation

problem, we present our assumptions, our mirrored kernel density estimator, and our main

results, followed by some preliminary lemmas and proofs of our main results. The presen-

tation of the estimator, as well as some of the preliminary lemmas and then proofs of our

main results in this section are particularly important, as the estimator is nearly the same as

will be used in the general case, and some of the lemmas and proof techniques given here

will simply be referenced in the discussion of the general case.

2.2.1 Problem Statement

For a given d ≥ 1, consider random d-dimensional real vectors X and Y in the unit cube

X := [0, 1]d, distributed according to densities p, q : X → R, respectively. For a given

α ∈ (0, 1) ∪ (1,∞), we are interested in using a random sample of n i.i.d. points from p

and n i.i.d. points from q to estimate the Rényi-α divergence

Dα(p‖q) =
1

α− 1
log

(∫
X
pα(x)q1−α(x) dx

)
.

2.2.2 Assumptions

Density Assumptions: We assume that p and q are in a bounded Hölder class with van-

ishing boundary derivatives, Σ(β, L, r, d) (defined in 2.5), 6 and also assume p and q are

bounded above and away from 0; i.e., ∃κ2, κ1 > 0 with κ1 ≤ infx∈X p(x), infx∈X q(x) and

κ2 ≥ supx∈X p(x), supx∈X q(x). 7

Kernel Assumptions: We assume the kernel K : R→ R has bounded support [−1, 1]

and is of order `, as defined in (2.7).

6We could take p and q to be in different Hölder classes Σ(βp, Lp, rp, d) and Σ(βq, Lq, rq, d), but
the bounds we show depend, asymptotically, only on the weaker of the conditions on p and q (i.e.,
min{βp, βq},max{Lp, Lq}, etc.).

7The need for a lower bound κ1 (because, essentially, of the explosion of the logarithm at 0) is one of the
reasons for working on the domain X = [0, 1]d, a set of finite Lebesgue measure.
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There are many interesting points of discussion regarding our assumptions. To avoid

redundancy, we withold these until Section 2.5, after discussing the general density func-

tional estimator.

2.2.3 Estimator

Let [d] := {1, 2, . . . , d}, and let

S := {(S1, S2, S3) : S1 ∪ S2 ∪ S3 = [d], Si ∩ Sj = ∅ for i 6= j}

denote the set of partitions of [d] into 3 distinguishable parts. For a small h > 0 (to be

specified later), for each S ∈ S, define the region

CS = {x ∈ X : ∀i ∈ S1, 0 ≤ xi ≤ h,

∀j ∈ S2, h < xj < 1− h,

∀k ∈ S3, 1− h ≤ xk ≤ 1}

and the regional kernel KS : [−1, 2]d ×X → R by

KS(x, y) :=
∏
j∈S1

K

(
xj + yj
h

)
·
∏
j∈S2

K

(
xj − yj
h

)
·
∏
j∈S3

K

(
xj − 2 + yj

h

)
.

Note that {CS : S ∈ S} partitions X (as illustrated in Figure 2-1), up to intersections of

measure zero, and that KS is supported only on [−1, 2]d × CS . The term K
(xj+yj

h

)
corre-

sponds to reflecting y across the hyperplane xj = 0, whereas the termK
(
xj−2+yj

h

)
reflects

y across xj = 1, so that KS(x, y) is the product kernel (in x), with uniform bandwidth h,

centered around a reflected copy of y.

We now define the “mirror image” kernel density estimator

p̃h(x) =
1

nhd

n∑
i=1

∑
S∈S

KS(x, xi),

where xi denotes the ith sample. Since the derivatives of p and q vanish near ∂X , p and q
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Figure 2-1: Illustration of regions C(S1,S2,S3) with 3 ∈ S1. The region labeled R corre-
sponds to S1 = {3}, S2 = {1}, S3 = {2}.

are approximately constant near ∂X , and so the mirror image estimator attempts to reduce

boundary bias by mirroring data across ∂X before kernel-smoothing. We then clip the

estimator at our lower and upper bounds κ1 and κ2:

p̂h(x) = min(κ2,max(κ1, p̃h(x))).

Finally, we plug our clipped density estimate into the following plug-in estimator for

Rényi α-divergence:

Dα(p‖q) =
1

α− 1
log

(∫
X
pα(x)q1−α(x) dx

)
=

1

α− 1
log

(∫
X
f(p(x), q(x)) dx

)
(2.8)

for f : [κ1, κ2]
2 → R defined by f(x1, x2) := xα1x

1−α
2 . Our α-divergence estimate is then

Dα(p̂h‖q̂h).

2.2.4 Main Result

Rather than the usual decomposition of mean squared error into variance and squared bias,

we decompose the error |Dα(p̂h‖q̂h) −Dα(p‖q)| of our estimatator into a bias term and a

variance-like term via the triangle inequality:

|Dα(p̂h‖q̂h)−Dα(p‖q)| ≤ |Dα(p̂h‖q̂h)− EDα(p̂h‖q̂h)|︸ ︷︷ ︸
variance-like term

+ |EDα(p̂h‖q̂h)−Dα(p‖q)|︸ ︷︷ ︸
bias term

.
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We will prove the “variance” bound

P (|Dα(p̂h, q̂h)− EDα(p̂h, q̂h)| > ε) ≤ 2 exp

(
− k1ε

2n

‖K‖2d1

)
,

and the bias bound

|EDα(p̂h‖q̂h)−Dα(p‖q)| ≤ k2

(
hβ + h2β +

1

nhd

)
,

where k1, k2 are constant in the sample size n and bandwidth h (see (2.18) and (2.20) for

exact values of these constants). While the variance bound does not depend on h, differ-

entiation shows that the bias bound is minimized by h � n−
1

d+β , giving the convergence

rate

|EDα(p̂h‖q̂h)−Dα(p‖q)| ∈ O
(
n−

β
d+β

)
.

Note that we can use this exponential concentration bound to bound the variance of

D(p̂h‖q̂h). If F : [0,∞) → R is the cumulative distribution of the squared deviation of

Dα(p̂h‖q̂h) from its mean, then

1− F (ε) = P
(
(Dα(p̂h, q̂h)− EDα(p̂h, q̂h))

2 > ε
)
≤ 2 exp

(
− k1n

‖K‖2d1

)
.

Thus,

V[Dα(p̂h‖q̂h)] = E
[
(Dα(p̂h, q̂h)− EDα(p̂h, q̂h))

2] =

∫ ∞
0

(1− F (ε)) dε

≤
∫ ∞
0

2 exp

(
− k1nε

‖K‖2d1

)
dε = 2

‖K‖2d1
k1

n−1.

We then have a mean squared-error of

E
[
(D(p̂h‖q̂h)−D(p‖q))2

]
∈ O

(
n−1 + n−

2β
d+β

)
.

which is in O(n−1) if β ≥ d and in O
(
n−

2β
d+β

)
otherwise. This asymptotic rate is consis-

tent with previous bounds in density functional estimation [4, 35].
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2.2.5 Preliminaries

Here we establish a few minor points which will smooth the proofs of the main results.

Bound on Derivatives of f : Let f be as in (2.8). Since f is twice continuously differ-

entiable on the compact domain [κ1, κ2]
2, there is a constant Cf ∈ R, depending only on

κ1, κ2, and α, such that, ∀ξ ∈ (κ1, κ2)
2,∣∣∣∣ ∂f∂x1 (ξ)

∣∣∣∣ , ∣∣∣∣ ∂f∂x2 (ξ)

∣∣∣∣ , ∣∣∣∣∂2f∂x21 (ξ)

∣∣∣∣ , ∣∣∣∣∂2f∂x22 (ξ)

∣∣∣∣ , ∣∣∣∣ ∂2f∂x1x2
(ξ)

∣∣∣∣ ≤ Cf . (2.9)

Cf can be computed explicitly by differentiating f and observing that the derivatives of f

are monotone in each argument. We will use this bound later in conjunction with the Mean

Value and Taylor’s theorems.

Logarithm Bound: If g, ĝ : X → R with 0 < c ≤ g, ĝ for some c ∈ R depending only

on κ1 and α, then, by the Mean Value Theorem, there exists Clog depending only on κ1 and

α such that∣∣∣∣log

(∫
X
ĝ(x) dx

)
− log

(∫
X
g(x) dx

)∣∣∣∣ ≤ Clog

∫
X
|ĝ(x)− g(x)| dx. (2.10)

We will use this bound to eliminate logarithms from our calculations.

Bounds on Derivatives of p: Combining the assumption that the derivatives of p vanish

on ∂X and the Hölder condition on p, we bound the derivatives of p near ∂X . In particular,

we show that, if~i ∈ Nd has 1 ≤ |~i| ≤ `, then, ∀x ∈ B := {x ∈ X : dist(x, ∂X ) ≤ h}

|D~ip(x)| ≤ Lhβ−|
~i|

(`− |~i|)!
. (2.11)

Proof: We proceed by induction on |~i|, as |~i| decreases from ` to 0. The case |~i| = ` is

precisely the Hölder assumption (2.4). Now suppose that we have the desired bound for

derivatives of order |~i|+1. Let x ∈ ∂X , u = (0, . . . , 0,±1, 0, . . . , 0) ∈ Rd, where uj = ±1.
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If y + hu ∈ X (any x ∈ B is clearly of this form, for some j ∈ [d]), then

|D~ip(y + u)| ≤
∫ h

0

∣∣∣∣ ∂∂xjD~ip(y + tu)

∣∣∣∣ dt ≤ ∫ h

0

Ltβ−(|
~i|+1)

(`− |~i| − 1)!
dt

=
Lhβ−|

~i|

(β − |~i|)(`− |~i| − 1)!
≤ Lhβ−|

~i|

(`− |~i|)!
.

The desired result follows by induction on |~i|. �

Integral of Mirrored Kernel: A key property of the mirrored kernel is that the mass

of the kernel over X is preserved, even near the boundary of X , as the kernels about the

reflected data points account exactly for the mass of the kernel about the original data point

that is not in X . In particular, ∀y ∈ X ,

∑
S∈S

∫
X
|KS(x, y)| dx = hd‖K‖d1. (2.12)

  

x1

X

Figure 2-2: A data point x1 ∈ C({1,2},∅,∅) ⊂ [0, 1]2, along with its three reflected copies.
The sum of the integrals over X of (the absolute values of) the four kernels (with shaded
support) is ‖K‖21.

Proof: For each S ∈ S, the change of variables

uj = −xj, for j ∈ S1 uj = xj, for j ∈ S2 and uj = 2− xj, for j ∈ S3

returns the reflected data point created by KS back onto its original data point. Applying
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this change of variables gives

∑
S∈S

∫
X
|KS(x, y)| dx =

∫
[−1,2]d

∣∣∣∣Kd

(
u− y
h

)∣∣∣∣ du,

where Kd(x) :=
d∏
i=1

K(xi) denotes the product kernel. Rescaling, translating, and apply-

ing Fubini’s Theorem,

∑
S∈S

∫
X
|KS(x, y)| dx = hd

∫
[−1,1]d

|Kd(x)| dx = hd
(∫ 1

−1
|K(u)| du

)d
= hd‖K‖d1. �

2.2.6 Bias Bound

For an arbitrary p ∈ Σ(β, L, r, d) let Bp(x) := Ep̃h(x) − p(x) denote the bias of (the

unclipped estimator) p̃h at x ∈ X . The following lemma bounds the integrated squared

bias of p̃h. For x in the interior of X (x with distance greater than h from the boundary of

X ), a standard result bounds this quantity. Near the boundary of X , the proof is more

complicated, because the support of the kernel is not fully contained in X , and hence

we cannot simply use the symmetry of the kernel to drop the first ` terms of the Taylor

approximation. Instead, we use the fact that the derivatives of p vanish near the boundary

of X and the mirroring of our kernel density estimator, together with the Hölder condition,

to bound the estimator’s bias near the boundary of X .

Bias Lemma: There exists a constant C > 0 such that

∫
X
B2
p(x) dx ≤ Ch2β. (2.13)

Proof: We consider separately the “h-interior” Ih := (h, 1− h)d and the “h-boundary”

Bh = X\Ih. By a standard result 8 for kernel density estimates of Hölder continuous

functions (see, for example, Proposition 1.2 of [38]),

∫
I
B2
p(x) dx ≤ C2h

2β, where C2 :=
L

`!
‖K‖d1.

8The assumption that the kernel K is of order ` is used in the proof of this standard result.
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We now show that
∫
B
B2
p(x) dx ≤ C2

3h
2β (C3 will be specified in (2.16)).

Let S = (S1, S2, S3) ∈ S\{(∅, [d], ∅)} (as C(∅,[d],∅) = I). We bound |Bp(x)| on CS .

To simplify notation, by geometric symmetry, we assume S3 = ∅. Let u ∈ [−1, 1]d, and

define yS ∈ X by (yS)i := hui − xi,∀i ∈ S1 and (yS)i := xi − hui, ∀i ∈ S2 (we use this

choice in a change of variables in (2.17)). By the Hölder condition (2.4) and choice of yS ,∣∣∣∣∣∣p(yS)−
∑
|~i|≤`

D
~ip(x)

~i!
(yS − x)

~i

∣∣∣∣∣∣ ≤ L‖yS − x‖βr = L

(∑
j∈S1

|2xj + huj|r +
∑
j∈S2

|huj|r
)β/r

Since each |uj| ≤ 1 and, for each i ∈ S1, 0 ≤ xj ≤ h,∣∣∣∣∣∣p(yS)−
∑
|α|≤`

D
~ip(x)

~i!
(yS − x)

~i

∣∣∣∣∣∣ = L

(∑
j∈S1

(3h)r +
∑
j∈S2

hr

)β/r

≤ L (d (3h)r)
β/r

= L
(
3d1/rh

)β
.

Rewriting this using the triangle inequality

|p(yS)− p(x)| ≤ L
(
3d1/rh

)β
+

∣∣∣∣∣∣
∑

1≤|α|≤`

Dαp(x)

α!
(yS − x)α

∣∣∣∣∣∣ . (2.14)

Observing (y − x)
~i ≤ (3h)|

~i| and applying the bound in (2.11) on p’s derivatives near ∂X ,∣∣∣∣∣∣
∑

1≤|~i|≤`

D
~ip(x)

~i!
(yS − x)

~i

∣∣∣∣∣∣ ≤
∑
|~i|≤`

∣∣∣∣∣ Lhβ−|
~i|

(`− |~i|)!~i!
(3h)|

~i|

∣∣∣∣∣
= Lhβ

∑̀
k=0

∑
|~i|=k

3|
~i|

(`− k)!~i!
≤ Lhβ

∑̀
k=0

1

k!(`− k)!

∑
|~i|=k

k!3|
~i|

~i!
.

Then, applying the multinomial theorem (2.1) followed by the binomial theorem gives∣∣∣∣∣∣
∑

1≤|~i|≤`

D
~ip(x)

~i!
(yS − x)

~i

∣∣∣∣∣∣ ≤ Lhβ
∑̀
k=0

(3d)k

k!(`− k)!

= Lhβ
1

`!

∑̀
k=0

`!

(`− k)!k!
(3d)k = Lhβ

(3d+ 1)`

`!
.

23



Combining this bound with (2.14) gives

|p(yS)− p(x)| ≤ C3h
β, (2.15)

where C3 := L

((
3d1/r

)β
+

(3d+ 1)`

`!

)
. (2.16)

For x ∈ CS , we have p̃h(x) = 1
nhd

∑n
i=1KS(x, xi), and thus, by a change of variables,

recalling that Kd(x) denotes the product kernel,

Ep̃h(x) =
1

hd

∫
X
KS(x, u)p(u) du =

∫
[−1,1]d

Kd(v)p(yS) dv, (2.17)

Since
∫
[−1,1]d

Kd(v) dv = 1, by the bound in (2.15),

|Bp(x)| = |Ep̃h(x)− p(x)| =
∣∣∣∣∫

[−1,1]d
Kd(v)p(yS) dv −

∫
[−1,1]d

Kd(v)p(x) dv

∣∣∣∣
≤
∫
[−1,1]d

Kd(v)|p(yS)− p(x)| dv

≤
∫
[−1,1]d

Kd(v)C3h
β dv = C3h

β.

Then,
∫
B B

2
p(x) dx ≤ C2

3h
2β (B has measure less than 1), proving the Bias Lemma. �

We now return to bounding the bias of D(p̂h, q̂h), by reducing part of the bias of our

divergence estimator to the bias of the kernel density estimate, which we have just bounded.

By Taylor’s Theorem, ∀x ∈ X , for some ξ : X → R2 on the line segment between

(p̂h(x), q̂h(x)) and (p(x), q(x)),

|Ef(p̂h(x), q̂h(x))− f(p(x), q(x))|

=

∣∣∣∣E ∂f

∂x1
(p(x), q(x))(p̂h(x)− p(x)) +

∂f

∂x2
(p(x), q(x))(q̂h(x)− q(x))

+
1

2

[
∂2f

∂x21
(ξ)(p̂h(x)− p(x))2 +

∂2f

∂x22
(ξ)(q̂h(x)− q(x))2

]
+

∂2f

∂x1∂x2
(ξ)(p̂h(x)− p(x))(q̂h(x)− q(x))

∣∣∣∣
≤ Cf (|Bp(x)|+ |Bq(x)| + E [p̂h(x)− p(x)]2 + E [q̂h(x)− q(x)]2 + |Bp(x)Bq(x))|) ,
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where the last line follows from the triangle inequality and (2.9). Thus, using (2.10),

|EDα(p̂h‖q̂h)−Dα(p‖q)| =
∣∣∣∣ 1

α− 1

(
E log

∫
X
f(p̂h(x), q̂h(x)) dx− log

∫
X
f(p(x), q(x)) dx

)∣∣∣∣
≤ Clog

|α− 1|

∫
X
|Ef(p̂h(x), q̂h(x))− f(p(x), q(x)) dx|

≤ CfClog

|α− 1|

∫
X
|Bp(x)|+ |Bq(x)|+ E [p̂h(x)− p(x)]2

+ E [q̂h(x)− q(x)]2 + |Bp(x)Bq(x)| dx.

By Hölder’s Inequality, we then have

|EDα(p̂h‖q̂h)−Dα(p‖q)| ≤ CfClog

|α− 1|κ1

(√∫
X
B2
p(x) dx +

√∫
X
B2
q (x) dx

+

∫
X
E [p̂h(x)− p(x)]2 + E [q̂h(x)− q(x)]2 dx

+

√∫
X
B2
p(x) dx

∫
X
B2
q (x) dx

)
.

Applying the Bias Lemma (2.13) and a standard result in kernel density estimation (see,

for example, Propositions 1.1 and 1.2 of [38]) gives

|EDα(p̂h‖q̂h)−Dα(p‖q)| ≤ (C2 + C3)h
β + C2h

2β + κ2
‖K‖d1
nhd

≤ C

(
hβ + h2β +

1

nhd

)
, (2.18)

for some C > 0 not depending on n or h. �

2.2.7 Variance Bound

The main tool in proving our exponential bound is McDiarmid’s Inequality [24] (also

known as the method of bounded differences), a special case of Azuma’s Inequality:
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McDiarmid’s Inequality: Suppose X1, · · · , Xn are independent random varibles and

a function f : Rn → R has the property

sup
i∈[n]

sup
x1,...,xn,x′i

f(x1, · · · , xn)− f(x1, · · · , xi−1, x′i, xi+1, · · · , xn) ≤ C,

for some C ∈ R (which may depend on n). That is, the change in the function value when

changing any input is bounded by a constant. Then, for all ε > 0,

P(|f(X1, · · · , Xn)− Ef(X1, · · · , Xn)| ≥ ε) ≤ 2 exp

(
− 2ε2

nC2

)
. (2.19)

The observation underlying our use of McDiarmid’s inequality is that the change in our

estimate when changing one sample is bounded by twice the mass of the kernel times a

constant over n, since changing one sample amounts to moving one instance of the mirrored

kernel in our density estimate. In particular, the C we plug into McDiarmid’s Inequality

decays as n−1.

The proof proceeds as follows. Consider i.i.d. samples x1, . . . , xn ∼ p, y1, . . . , yn ∼ q.

In anticipation of using McDiarmid’s Inequality, let p̂′h(x) denote our kernel density esti-

mate with the sample xj replaced by (xj)′. By the Logarithm Bound (2.10),

|Dα(p̂h‖q̂h)−Dα(p̃′h‖q̃′h)|

=
1

|α− 1|

∣∣∣∣log

(∫
X
f(p̂h(x), q̂h(x)) dx

)
− log

(∫
X
f(p̂′h(x), q̂h(x)) dx

)∣∣∣∣
≤ Clog

|α− 1|

∫
X
|f(p̂h(x), q̂h(x))− f(p̂′h(x), q̂h(x))| dx.

Then, applying the Mean Value Theorem followed by the bound (2.9) on f ’s derivatives

gives, for some ξ : X → R2 on the line segment between (p̂h, q̂h) and (p, q),

|Dα(p̂h‖q̂h)−Dα(p̃′h‖q̃′h)| ≤
Clog

|α− 1|

∫
X

∣∣∣∣ ∂f∂x1 (ξ(x))(p̂h(x)− p̂′h(x))

∣∣∣∣ dx
≤ CfClog

|α− 1|

∫
X
|p̂h(x)− p̂′h(x)| dx.
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Expanding p̂h as per its construction gives

|Dα(p̂h‖q̂h)−Dα(p̃′h‖q̃′h)| ≤
CfClog

|α− 1|

∫
X
|p̃h(x)− p̃′h(x)| dx

≤ CfClog

|α− 1|nhd
∑
S∈S

∫
X

∣∣KS(x, xj)−KS(x, (xj)′)
∣∣ dx

≤ 2CfClog

|α− 1|nhd
sup
y∈X

∑
S∈S

∫
X
|KS(x, y)| dx =

2CfClog

|α− 1|n
‖K‖d1,

where the last line follows from the triangle inequality and (2.12). An identical proof

holds if we vary some yi rather than xi. Thus, since we have 2n independent samples,

McDiarmid’s Inequality gives the bound,

P (|Dα(p̂h, q̂h)− EDα(p̂h, q̂h)| > ε) ≤ 2 exp

(
−C

2ε2n

‖K‖2d1

)
,

where C =
|α− 1|
2CfClog

(2.20)

depends only on κ and α (see Inequalities (2.10) and (2.9) for the exact dependence) . �

2.3 General Density Functionals

Having shown the desired results for the case of Rényi-α divergence, we are now interested

in showing similar results for a larger class of density functionals. Some functionals of

interest include other Rényi-α quantities, related Shannon and Tsallis-α quanitities, and

Lp-norms and metrics, and the various divergences discussed in Section 1.1.

2.3.1 Problem Statement

For given dimensions d1, . . . , dk ≥ 1, consider random vectors X1, . . . , Xk on the unit

cubes Xi := [0, 1]di distributed according to densities pi : Xi → R (for i ∈ {1, . . . , k}).

For an appropriately smooth f : Rk → R we are interested in using random sample of n
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i.i.d. points from the distribution of each Xi to estimate the functional

F (p1, . . . , pk) =

∫
X
f(p1(x), . . . , pk(x)) dx.

where X := X1 × · · · × Xk.

2.3.2 Estimator

For a given bandwidth h, we use the mirrored kernel density estimator p̂i to estimate each

pi, and then estimate F (p1, . . . , pk) by

F (p̂1, . . . , p̂k) :=

∫
X
f(p̂1(x), . . . , p̂k(x)) dx.

2.3.3 Main Result

If each pi is in the bounded Hölder class Σ(β, L, r, di) with vanishing boundary derivatives,

f is twice continuously differentiable, and the kernel K : R → R has order ` and is

supported in [−1, 1],

|F (p1, . . . , pk)− EF (p̂1, . . . , p̂k)| ≤ C

(
hβ + h2β +

1

nhd

)

for some C ∈ R not depending on n or h.

On the other hand without any conditions on pi, if f : [κ1, κ2] → R is Lipschitz

continuous with constant Cf and K ∈ L1, then

P (|F (p̂)− EF (p̂)| > ε) ≤ 2 exp

(
−2ε2n

C2
V

)
.

2.3.4 Bias Bound

Assumptions

We assume that each pi is in the bounded Hölder class Σ(β, L, r, di) with vanishing bound-

ary derivatives, and that f : p1(X1)×· · ·×pk(Xk)→ R is twice continuously differentiable,
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with first and second partial derivatives bounded in magnitude by Cf ∈ R.

We also assume the kernel K : R→ R has bounded support [−1, 1] and is of order `.

Proof of Bias Bound

By Taylor’s Theorem, ∀x ∈ X , for some ξ : X → R on the line segment between p̃h(x)

and p(x),

|Ef((p̃h)1(x), . . . , (p̃h)k(x))− f(p1(x), . . . , pk(x))|

=

∣∣∣∣E∇f(p(x)) · (p̃h(x)− p(x)) +
1

2
(p̃h(x)− p(x))TH(f)(ξ)(p̃h(x)− p(x))

∣∣∣∣
≤ Cf

(
k∑
i=1

|Bpi(x)|+
∑
i<j≤k

|Bpi(x)||Bpj(x)|+
∑
i≤k

E [p̃h(x)− p(x)]2
)

Hence, applying Hölder’s Inequality,

|EF (p̃h)− F (p)| ≤
∫
X
|Ef(p̃h(x))− f(p(x))| dx

≤ Cf

∫
X

k∑
i=1

|Bpi(x)|+
∑
i<j≤k

|Bpi(x)||Bpj(x)|+
∑
i≤k

B2
pi

(x) dx

≤ Cf

k∑
i=1

(√∫
X
B2
p(x) dx+

∫
X
E[p̃h(x)− p(x)]2 dx

)

+ Cf
∑
i<j≤k

√∫
X
B2
pi

(x)

∫
X
B2
pj

(x) dx.

Applying the Bias Lemma (Inequality 2.13) and standard results in kernel density estima-

tion (see, for example, [38]) gives

|EF ((p̃h)1, . . . , (p̃h)k)− F (p1, . . . , pk)| ≤ (C2 + C3)
2
(
k2hβ + kh2β

)
+ kκ2

‖K‖d1
nhd

≤ C

(
hβ + h2β +

1

nhd

)

for some C > 0 not depending on n or h, where d = max{d1, . . . , dk}.
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2.3.5 Variance Bound

Assumptions

We assume that f is Lipschitz continuous with constant Cf in the 1-norm on p1(X1)×· · ·×

pk(Xk), and that K ∈ L1.

Proof of Variance Bound

Consider i.i.d. samples x1, . . . , xn ∼ p. In anticipation of using McDiarmid’s Inequality

(recall 2.19), let p̂′ denote our kernel density estimate with the sample xi replaced by a new

sample (xi)′. By the Mean Value Theorem

|F (p̂)− F (p̂′)| ≤ Cf‖p̂− p̂′‖1 ≤ Cf

(
k∑
j=1

∫
Xj
|p̂j(x)− p̂j(x)| dxj

)

≤ Cf
nh

(
k∑
j=1

∫
Xj

∣∣∣∣Kdj

(
xj − xij
h

)
−Kdj

(
xj − (xij)

′

h

)∣∣∣∣ dxj
)

≤ Cf
n

(
k∑
j=1

∫
Xj

∣∣Kdj

(
xj − xij

)
−Kdj

(
xj − (xij)

′)∣∣ dxj)

≤ 2Cf
n

k∑
j=1

‖K‖dj1 =:
CV
n
,

so that McDiarmid’s Inequality gives

P (|F (p̂)− EF (p̂)| > ε) ≤ 2 exp

(
− 2ε2

nC2
V /n

2

)
= 2 exp

(
−2ε2n

C2
V

)
.

Thus,

V[F (p̂1, · · · , p̂k)] = E
[
(F (p̂1, · · · , p̂k)− EF (p̂1, · · · , p̂k))2

]
=

∫ ∞
0

P
(
F (p̂1, · · · , p̂k)− EF (p̂1, · · · , p̂k))2 > ε

)
dε

≤
∫ ∞
0

2 exp

(
−2εn

C2
V

)
dε =

C2
V

n
.

Optimizing over h (so h � n
1

d+β ) gives a mean squared error of
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E
[
(F (p̂h)− F (p))2

]
=
C2
V

n
+ C2

B

(
hβ + h2β +

1

nhd

)2

∈ O
(
n−1 + n−

2β
d+β

)
.

which is in O(n−1) if β ≥ d and in O
(
n−

2β
d+β

)
otherwise. This asymptotic rate is consis-

tent with previous bounds in density functional estimation [4, 35].

2.4 Application to Rényi-α Conditional Mutual Informa-

tion

We now apply our general result to the case of Renyi-α Conditional Mutual Information, a

important because of its applicability to conditional independence testing (see Section 3.2

for further discussion).

2.4.1 Problem Statement

For given dimensions dx, dy, dz ≥ 1, consider random vectors X , Y , and Z distributed

on unit cubes X := [0, 1]dx ,Y := [0, 1]dy and Z := [0, 1]dz according to a joint density

PX,Y,Z : X × Y × Z → R. For a given α ∈ (0, 1) ∪ (1,∞), we are interested in using

a random sample of 4n i.i.d. points from P to estimate the Renyi-α conditional mutual

information of X and Y given Z:

Iα(X;Y |Z) =

∫
Z
P (z)

∫
X×Y

(
P (x, y, z)

P (z)

)α(
P (x, z)P (y, z)

P 2(z)

)1−α

d(x, y) dz

where P (z), P (x, y), P (x, z), and P (y, z) denote the respective marginal distributions.

2.4.2 Assumptions

Density Assumptions: We assume the joint density PX,Y,Z(x, y, z) is in the Hölder class

Σ(β, L, r, dx+dy +dz) with vanishing boundary derivatives, and, furthermore, there exists

κ = (κ1, κ2) ∈ (0,∞)2 with κ1 ≤ PX,Y,Z ≤ κ2.

Kernel Assumptions: We assume the kernel K : R→ R has bounded support [−1, 1]

and is of order `, as defined in (2.7).
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2.4.3 Proof

In order to apply the Mean Value Theorem, define lower and upper bounds, respectively, to

the argument of the logarithm.

κ∗ := κα1 min
{
κ
2(1−α)
1 κα−22 , κ

2(1−α)
2 κα−22 , κ

2(1−α)
2 κα−21

}
= (κ1/κ2)

max{2−α,α,2(α−1)}

≤
∫
X×Y

Pα(x, y, z) (P (x, z)P (y, z))1−α Pα−2(z) d(x, y)

and κ∗ := κ−1∗ = (κ2/κ1)
max{2−α,α,2(α−1)}

≥
∫
X×Y

Pα(x, y, z) (P (x, z)P (y, z))1−α Pα−2(z) d(x, y)

and define fα : [κ1, κ2]
4 → R by fα(w, x, y, z) := (wα(xy)1−αzα−2), noting that f is

Lipschitz on this domain. Applying the Mean Value Theorem to the logarithm,

|1− α||Îα(X;Y |Z)− Î ′α(X;Y |Z)|

≤ κ2
κ∗

∫
X×Y×Z

∣∣Pα(x, y, z) (P (x, z)P (y, z))1−α Pα−2(z)

− (P ′(x, y, z))α (P ′(x, z)P ′(y, z))
1−α

(P ′(z))α−2
∣∣∣ d(x, y, z) + log(κ∗)

∫
Z
|P (z)− P ′(z)| dz

= κ2κ
∗
∫
X×Y×Z

|f(P (x, y, z), P (x, z), P (y, z), P (z))− f(P ′(x, y, z), P ′(x, z), P ′(y, z), P ′(z))| d(x, y, z)

+ log(κ∗)

∫
Z
|P (z)− P ′(z)| dz = κ2κ

∗|F (P )− F (P ′)|+ log(κ∗)|G(P )−G(P ′)|

≤ κ2κ
∗8Cf‖K‖

dx+dy+dz
1

n
+ log(κ∗)

2‖K‖dz1
n

= Cn−1,

for C := 2‖K‖dz1
(

4κ2κ
∗Cf‖K‖dx+dy1 + log(κ∗)

)
. Hence, McDiarmid’s Inequality gives

P
(
|I(P̂ )− EI(P̂ )| > ε

)
≤ 2 exp

(
−2ε2n

C2

)
,

which in turn gives the Variance Bound V[I(P̂ )] ≤ C2
V n
−1, giving the Mean Square Error

bound

E
[
(F (p̂h)− F (p))2

]
= C2

V n
−1 + C2

B

(
hβ + h2β +

1

nhd

)2

∈ O
(
n−1 + n−

2β
d+β

)
,
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(where d = dx+dy+dz) which is inO(n−1) if β ≥ d and inO
(
n−

2β
d+β

)
otherwise. [4, 35].

2.5 Comments regarding the assumptions

Suppose a pi is γ times continuously differentiable for a positive integer γ. Since X is

compact, the γ-order derivatives of pi are bounded. Hence, since X is convex, the (γ − 1)-

order derivatives of pi are Lipschitz, by the Mean Value Theorem. Consequently, any

degree of continuous differentiability suffices for the Hölder condition.

The existence of an upper bound κ2 is trivial, since each pi is continuous and X is com-

pact. The existence of a positive lower bound κ1 for (some) pi’s is in some cases quite a

natural assumption. For example, in the case of Rényi-α divergence, it is natural to assume

that the reference density (our q) is bounded below almost everywhere as otherwise the

Rényi-α divergence may be infinite. In other cases, the existence of κ1 is a technical neces-

sity due to certain singularities at 0 (for example, the Logarithm Bound (2.10)). In some

cases (including the important special case of Rényi-α entropy (i.e., Rényi-α divergence

with respect to the uniform distribution q = 1)), the assumption of κ1 for p can still be

dropped via an argument using Jensen’s Inequality (when α > 1, this argument requires

the domain to have finite measure; see the next paragraph).

Understanding the choice of a seemingly well-behaved (in particular, bounded) domain

such as the unit cube [0, 1]d is important for understanding the ramifications of this work.

Unlike many problems in analysis, non-parametric estimation problems can be significantly

more difficult on bounded domains, because of lack of data near the boundary, which typ-

ically leads to boundary bias. 9 However, when working with, for example, information-

theoretic density functionals, it can be important to establish lower bounds on the density

in question, which, of course, cannot be done if the domain has infinite Lebesgue measure,

since the density must have unit mass. Indeed, it is possible that the combined necessity

and difficulty of working on bounded domains is a major reason for the lack of general

results concerning non-parametric estimation of information-theoretic density functionals;

9[13] suggests how, given bounds on the mean and variance of the random variables, our results can be
extended to the case of an unbounded domain in a straightforward manner.
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certainly, it is the reason for one of the restrictive and artificial assumptions we make: that

the density in question has derivatives vanishing at the boundary of the domain.

The assumed Hölder condition, in combination with Taylor’s Theorem, lies at the core

of our bounds of the density functional estimator’s bias. It is straightforward to adapt these

assumptions and our results to those Sobolev spaces which embed into Hölder spaces.

However, based on previous work (see Section 1.3 of [38]) using Fourier analysis to bound

the error of Kernel Density Estimators over the Sobolev spaces H` = W `,2, it seems likely

that an interesting new family of bias bounds might hold over these spaces. This may

be a worthwhile topic for future work on the subject, although the generalizing to the

multidimensional case may be somewhat more complicated here.

The proof of the bias bound also depends critically on the assumption that the kernel

is of order `. When β > 2, this, implies that K is non-positive on a subset of [−1, 1] of

positive measure. In combination with the assumption that
∫ 1

−1K(x) dx = 1, this implies

‖K‖1 > 1. Since the final bounds on both bias and variance include ‖K‖d1 terms, both

bounds increase exponentially in the dimension d. One possible solution is to modify the

product kernel in such a manner that its L1-norm is not exponential in the dimension. Using

a radial kernel, for example, might reduce this somewhat, but the dependence would still be

exponential in d. Another perhaps more promising solution is to consider Fourier analysis

proofs over Sobolev spaces, as discussed above. The basic forms of these proofs require

only that K have mean 0 each K, pi ∈ L2.
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Chapter 3

Conclusions and Future Work

3.1 Conclusion

In this paper we derived a finite sample exponential concentration bound for a consistent,

nonparametric density functional estimator. To the best of our knowledge this is the first

such exponential concentration bound for Renyi divergence.

3.2 Future Work

One of the primary motivations for studying conditional mutual information estimation is

in determining conditional independence of two variables given a third variable or family

of variables. This is important, for example, in determining graph structure in graphical

models. Given three variables, X , Y , and Z, we would like to determine whether knowing

Figure 3-1: Two possible graphs of dependence between the variable X ,Y , and Z. Our
results suggest a hypothesis test for distinguishing the two.
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the value of Z is sufficient to explain away any dependence between X and Y , in order to

differentiate between the two graphical models illustrated in Figure 3-1. Hence, a useful

extension of this work would be to establish a hypothesis test for conditional independence.

This could be performed by estimating conditional mutual information using our estimator,

and then computing an appropriate confidence interval about that estimate using the error

bounds we derive. X and Y would then be considered conditionally independent given Z

(at a particular confidence level) if and only if this confidence interval contains 0.
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Appendix A

Experimental Results

A.1 Experiment

We used our estimator to estimate the Rényi α-divergence between two normal distributions

in R3 restricted to the unit cube. In particular, for

~µ1 =


0.3

0.3

0.3

 , ~µ2 =


0.7

0.7

0.7

 , Σ =


0.2 0 0

0 0.2 0

0 0 0.2

 ,

p = N (~µ1,Σ), q = N (~µ2,Σ). For each n ∈ {1, 2, 5, 10, 50, 100, 500, 1000, 2000, 5000}, n

data points were sampled according to each distribution and constrained (via rejection sam-

pling) to lie within [0, 1]3. Our estimator was computed from these samples, for α = 0.8,

using the Epanechnikov Kernel K(u) = 3
4
(1 − u2) on [−1, 1], with bandwidth h = 0.25.

The true α-divergence was computed directly according to its definition on the (renormal-

ized) distributions on [0, 1]3. The bias and variance of our estimator were then computed

in the usual manner based on 100 trials. Figure A-1 shows the error and variance of our

estimator for each n.

We also compared our estimator’s empirical error to our theoretical bound. Since the

distributions used are infinitely differentiable, β =∞, and so the estimator’s mean squared

error should converge as O(n−1). An appropriate constant multiple was computed from
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(2.20), (2.16), and (2.18). The resulting bound is also shown in Figure A-1.

Figure A-1: Log-log plot of mean squared error (computed over 100 trials) of our estimator
for various sample sizes n, alongside our theoretical bound. Error bars indicate standard
deviation of estimator over 100 trials.
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Appendix B

A Note on The Special Case α→ 1

Suppose X ⊆ Rn has finite Lebesgue measure 0 < µ(X ) < ∞, and let p : X → [0,∞)

be a probability density on X . Assume p is continuous and ∃κ1, κ2 ∈ (0,∞) with κ1 ≤

p(x) ≤ κ2,∀x ∈ X . Define the Shannon entropy

H(p) := −
∫
X
p(x) log p(x) dx ∈ [−∞,+∞] (B.1)

and, for α ∈ (0,∞)\{1}, define Rényi-α entropy

Hα(p) :=
1

1− α
log

∫
X
pα(x) dx. (B.2)

It is well-known that Hα(p) → H(p) as α → 1. Indeed, applying l’Hospital’s rule, differ-

entiating under the integral sign, 1 and noting
∫
X p(x)dx = 1,

lim
α→1

log
∫
X p

α(x) dx

1− α
= − lim

α→1

d

dα
log

∫
X
pα(x) dx = − lim

α→1

d
dα

∫
X p

α(x) dx∫
X p

α(x) dx

= − lim
α→1

∫
X p

α(x) log p(x) dx∫
X p

α(x) dx
= −

∫
X
p(x) log p(x) dx = H(p).

(since p is bounded, the convergence in α is uniform, and hence the integrals converge).

Under similar assumptions, we can similarly show that, as α→ 1, Rényi-α divergence

1This can be justified rigorously using the facts thatX has finite measure and the function (α, x) 7→ pα(x)
is continuously differentiable in α and continuous in x.
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converges to Kullback–Leibler divergence, Rényi-α Conditional Mutual Information con-

verges to Shannon Conditional Mutual Information, etc. Shannon quantities are uniquely

useful in application because of theorems in Source Coding and Channel Coding for which

they were first studied, and also because of the many algebraic relationships between them.

However, they can be difficult to study analytically due to the explosive behavior of their

log terms (in particular, their resulting sensitivity to low probability outcomes). Because of

this, and also because of a results about Rényi-α quantities for other values of α (typically,

α ∈ {0, 1/2, 2,∞}), it is common to study the analytic properties of Rényi-α quantities.

However, in order to extend estimation error bounds for Rényi-α quantities to error

bounds for Shannon quanitites, it is often necessary to understand the rate of convergence

as α → 1. Understanding this is not straightforward, because the convergence is shown

using l’Hospital’s rule, with the denominator of 1 − α vanishing, and consequently, it is

difficult to find rate in the literature on the convergence of Rényi-α quantities as α → 1.

Here, we make an observation for the case of Rényi-α entropy, which may suggest new

means of bounding the error of approximating this limit in general.

B.1 Main Idea

The difficulty in proving a rate for the convergence of Hα(p)→ H(p) as α→ 1 appears to

be due to the vanishing 1−α term in the denominator. Letting gp : (0,∞)→ R defined by

gp(α) := log

∫
X
pα(x) dx,

observe that

H(p) = lim
α→1

Hα(p) = − lim
α→1

gp(α)− gp(1)

α− 1
= −g′p(α)

∣∣∣∣
α=1

.

Since gp is very smooth near α = 1, we show that two estimates of gp can be used to esti-

mate the value of g′ using a simple secant approximation. Furthermore, gp(α) is naturally

estimated as part of many Hα(p) estimators, with error bounds not depending on α, and so

this result complements such estimators of Rényi-α entropy.
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B.2 Proof:

Since we are bounding the error of approximating a first derivative, it is natural to bound

the second derivative:

Lemma: ∣∣g′′p(α)
∣∣ ≤ B := 2κ2

(
κ2
κ1

)2α

.

Proof: By differentiation under the integral sign and the quotient rule, noting that

d

dα
pα(x) = pα(x) log p(x) ∀x ∈ X ,

∣∣g′′p(α)
∣∣ =

∣∣∣∣ ddα
∫
X p

α(x) log p(x) dx∫
X p

α(x) dx

∣∣∣∣
=

∣∣∣∣∣
(∫
X p

α(x) log2 p(x) dx
) (∫

X p
α(x) dx

)
−
(∫
X p

α(x) log p(x) dx
)2(∫

X p
α(x) dx

)2
∣∣∣∣∣

≤ 2κ2α2 κ
2µ(X )2

κ2α1 µ(X )2
= 2κ2

(
κ2
κ1

)2α

.

By virtue of this lemma, it is easy to bound the error of approximating g′p(1) by a secant.

Main Result: ∀h ∈ (0, 1),∣∣∣∣g(1 + h)− g(1− h)

2h
− g′(1)

∣∣∣∣ ≤ Bh.

Proof: Applying the Lemma and the Mean Value Theorem repeatedly,

g′(1)−Bh ≤ inf
α∈(1−h,1+h)

g′(x) ≤ g(1 + h)− g(1− h)

2h
≤ sup

α∈(1−h,1+h)
g′(x) ≤ g′(1) +Bh.
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