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Abstract

A key feature of attention is that it moves over time, guided
both exogenously by changing external circumstances and en-
dogenously by internal cognitive states. However, the endoge-
nous mechanisms guiding the movement of attention in the ab-
sence of external cues remain poorly understood. This paper
develops and validates a computational model of how inter-
nal attentional states, motivated by the Adaptive Gain The-
ory of the locus coeruleus-norepinephrine (LC-NE) system,
can guide the movement of visual attention over time. By
fitting our model to young children’s gaze data as they per-
form a visual object tracking task, we investigate developmen-
tal changes in higher-order patterns of attending behavior be-
tween 3.5-6 years of age, and we hypothesize about how the
LC-NE system might mediate these changes.
Keywords: sustained attention development; locus coeruleus-
norepinephrine system; hierarchical hidden Markov model

While navigating life requires the ability to continuously
sustain attention on a given locus (e.g., to complete a simple
task), it also crucially requires switching attention between
loci in response to changing circumstances, new information,
or reprioritization of goals. To obtain a more complete picture
of how attention operates over time, it is thus necessary to in-
vestigate not only how individuals maintain their attention on
a particular locus, but also how they guide the movement of
their attention between different loci. While extensive work
beginning with Posner’s cueing paradigm (Posner, Nissen,
& Ogden, 1978; Posner, 1980; Posner & Petersen, 1990)
has investigated how external cues can trigger the movement
of attention, the internal mechanisms determining when and
where to move attention, independent of specific external
cues, remain poorly understood. Much research has also fo-
cused on characterizing sustained attention, the sustained al-
location of attention to a single “target” locus (Langner &
Eickhoff, 2013), but research on characterizing the movement
of attention to, from, and between other loci outside of a tar-
get locus has been comparatively limited.

Much attentional behavior may transpire outside of the
designated locus that is not captured by traditional experi-
mental paradigms; for example, an individual may balance
other goals alongside immediate task performance by engag-

ing in activities such as preparing for future tasks, reflect-
ing on past experiences, or exploring the task environment,
even when these directly conflict with optimally performing
the prescribed task (Andrews-Hanna, Smallwood, & Spreng,
2014). Although off-task behaviors have been studied quali-
tatively in mind-wandering research (Smallwood & Schooler,
2006, 2015), the movement of attention between loci has
rarely been studied quantitatively.

Kim, Singh, Thiessen, and Fisher (2020) recently devel-
oped a quantitative approach to modeling the movement
of visual attention between loci in participants performing
TrackIt, a visual object tracking task (Fisher, Thiessen, God-
win, Kloos, & Dickerson, 2013). Their approach utilizes a
hidden Markov model (HMM), in which hidden states cor-
respond to possible objects of attention (among the objects
being displayed by TrackIt) and observations correspond to
participants’ gaze, which is continuously recorded as they
perform the task. Given the gaze data, this HMM allows re-
searchers to infer the object of a participants’ attention as it
moves over time, and to identify transitions between objects.

An HMM is a natural choice for a simple model of hu-
man visual attention; at each time point t, the participant at-
tends to something S(t) (the hidden state), and we observe
eye-tracking data that is primarily a function of S(t) and ran-
dom noise. Because human attention moves slowly relative
to the frequency at which eye-tracking data is collected, the
state S(t) is strongly related to the preceding and successive
states (S(t − 1) and S(t + 1)). Unlike simpler models that
consider data at each time point independently (Zelinsky &
Neider, 2008), the HMM uses this short-term dependence
to mitigate noise and handle complex scenarios such as ob-
ject collisions (when multiple objects briefly occupy the same
space), without sacrificing the fine temporal resolution of eye-
tracking data. However, the model of Kim et al. (2020)does
not make any substantial assertions about the cognition un-
derlying attending behavior over time. In this paper, we de-
velop a computational model, built on top of the HMM of
Kim et al. (2020), of how higher-order patterns of attending



behavior, which we refer to as attentional modes, can guide
the movement of visual attention over time. Specifically,
we describe a hierarchical extension of the HMM that incor-
porates longer time dependencies through attentional modes
motivated by those outlined in the Adaptive Gain Theory of
the Locus Coeruleus-Norepinephrine system (Aston-Jones &
Cohen, 2005, described below). By building on the HMM
of Kim et al. (2020), we are able to fit our model’s param-
eters using participants’ gaze data collected as they perform
TrackIt. We then use our model to investigate development
of young children’s attending behavior.

Adaptive Gain Theory of the Locus
Coeruleus-Norepinephrine System
The locus coeruleus (LC) is a small group of about 32,000
noradrenergic neurons in the pons that provides the bulk of
norepinephrine (NE) in the brain. The LC-NE system has
historically been thought to play a crucial role in attention,
initially found to regulate basic arousal on the sleep-wake
spectrum (Berridge & Waterhouse, 2003), and later found to
also directly influence behavioral performance in a capacity
beyond just general arousal regulation, through two different
types of LC activity: phasic and tonic. ”Phasic activity” de-
scribes bursts of LC activity that are typically associated with
focused perception of task-relevant information, while ”tonic
activity” describes overall background LC activity and is as-
sociated with overall levels of arousal.

The Adaptive Gain Theory (AGT) of the LC-NE system,
proposed by Aston-Jones and Cohen (2005), describes three
modes of attending behavior over time: a high tonic mode,
characterized by overall high baseline activity in LC neu-
rons and distracted attending, a phasic mode, characterized
by overall lower baseline activity in LC neurons with pha-
sic spikes of activity temporally corresponding to focused at-
tending and task-relevant responding, and a low tonic mode
corresponding to low baseline LC activity, no phasic spikes,
and behavioral disengagement from the visual environment.

We propose to incorporate these three modes into the
HMM using a hierarchical extension of the HMM (a Hier-
archical Hidden Markov Model, HHMM). In particular, we
propose to add a second hidden layer, illustrated in Fig. 1,
with three latent states:

1. A Distractible mode (based on the AGT’s high tonic
mode), in which attention is not selective to the Target and
transitions often between objects.

2. An Optimally Engaged mode (based on AGT’s phasic
mode), in which attention remains on Target.

3. A Disengaged mode (based on AGT’s low tonic mode),
in which attention is not allocated to any of the displayed
objects.

(Aston-Jones & Cohen, 2005) proposed that these differ-
ent modes of LC-NE activity play roles in navigating the
exploration-exploitation trade-off of attention, the competi-
tion between attending to task-relevant sources of informa-
tion and exploring new sources of information. Direct evi-
dence supporting this hypothesis has recently been provided

Attentional Modes

Distractible Disengaged

Attentional States

Optimally 
Engaged

Target Dist 1 Dist 2 Dist 5 Dist 6Dist 3 Dist 4 Off
Task

Figure 1: Schematic of the proposed HHMM. The three
second-order hidden states corresponding to modes of LC-
NE functioning are illustrated in the top layer. Below that are
8 first-order hidden states, corresponding to the 7 TrackIt ob-
jects and an “Off-Task” state. The participant’s gaze at each
time point depends on which of these 8 states they are in.

by Dubois, Habicht, et al. (2020), who showed that admin-
istering a norepinephrine blocker reduces participants’ ex-
ploratory search behavior. Further indirect evidence, based
on measurement of pupil diameter, which has been shown to
be related to LC activity (Mathôt, 2018; Rajkowski, 1993;
Gilzenrat, Cohen, Rajkowski, & Aston-Jones, 2003; Al-
næs et al., 2014) suggests that both high tonic LC activity
(Smallwood et al., 2011; Unsworth & Robison, 2016; Kon-
ishi, Brown, Battaglini, & Smallwood, 2017) and low tonic
LC activity (Grandchamp, Braboszcz, & Delorme, 2014; Mit-
tner et al., 2014; Unsworth & Robison, 2016; Konishi et al.,
2017) are related to reduced processing of task-relevant stim-
uli and poorer performance on sustained attention tasks, sug-
gesting that optimal engagement lies in balancing these two.

Development of Sustained Attention
Attending behavior shows marked developments in children
between the ages of 3.5 to 6 years (see (Fisher & Kloos, 2016)
for a detailed review), the population targeted in our study.
Many studies have documented improvements in selectively
attending to and sustaining attention on task-relevant infor-
mation in the presence of distracting task-irrelevant informa-
tion (Diamond, 2006; Fisher et al., 2013; Ruff & Rothbart,
2001). Recent studies have shown that this increased selec-
tivity of attention has costs in terms of reduced processing
of task-irrelevant information (Blanco & Sloutsky, 2020a;
Deng & Sloutsky, 2016; Dubois, Aislinn, et al., 2020; Ple-
banek & Sloutsky, 2017). This can be viewed as a devel-
opmental trend along the exploration-exploitation trade-off
in the guidance of attention, with younger children exhibit-
ing more exploratory attention to support longer term learn-
ing and older children exhibiting increasingly more exploita-
tive attention to support shorter-term performance (Blanco &



Sloutsky, 2020a; Dubois, Aislinn, et al., 2020; Gopnik, 2020;
Laureiro-Martı́nez, Brusoni, & Zollo, 2010; Mehlhorn et al.,
2015). As described above, the LC-NE system has been im-
plicated in the mediation of exploration and exploitation, sug-
gesting that it may play a role in this developmental trend.
While further work is needed to verify connections between
behavior and the LC-NE system, the present study begins to
evaluate the plausibility of this hypothesis by testing predic-
tions about behavior across development from our cognitive
model motivated by the LC-NE system. Specifically, we hy-
pothesize that, over the course of development between 3.5-6
years of age, children will spend less time in the Distractible
mode and more time in the Optimally Engaged mode.

Specific Contributions
In this paper, we investigate two sets of questions regarding
the HHMM model. On the modeling side, we first demon-
strate practical feasibility and face validity of the HHMM by
fitting its parameters to data from real participants perform-
ing TrackIt, confirming that the fitted parameters satisfy ba-
sic expectations about the model, and evaluating how well the
model predicts participants’ task performance. We also per-
form an ablation study to evaluate the relative importance of
each mode in our model. On the developmental side, we test
the two hypotheses motivated above, namely that, over the
course of development between the ages of 3.5-6 years, chil-
dren will spend (a) less time in the Distractible mode and (b)
more time in the Optimally Engaged mode.

Methods
TrackIt
TrackIt, illustrated in Figure 2, is a visual object-tracking task
introduced by Fisher et al. (2013) to measure sustained atten-
tion in young children. Participants are instructed to track,
using only their eyes, a single Target object moving about
on a grid, among other moving Distractor objects. At the
end of each trial, all objects vanish from the grid, and par-
ticipants are asked to identify the grid cell the Target occu-
pied immediately before vanishing. The accuracy of this fi-
nal response, referred to as Location Response, is used as the
main behavioral measure of task performance. This measure
allows developmentally sensitive assessment of sustained at-
tention over a range of ages, with children as young as 3 years
old consistently completing the task and providing usable
data (Fisher et al., 2013; Keebler, Kim, Stanley, Thiessen, &
Fisher, 2020; Kim, Vande Velde, Thiessen, & Fisher, 2017).

Because TrackIt requires continuous overt attention to
the Target, eye-tracking provides information about a par-
ticipant’s visual attention with high temporal resolution.
Moreover, TrackIt explicitly provides task-irrelevant objects,
alongside the Target, to which the participant can attend, al-
lowing us to distinguish attentional lapses due to distraction
by task-irrelevant stimuli from those caused by disengage-
ment from the visual task. These features make TrackIt, to-
gether with eye-tracking, well suited to investigating the three

attentional modes proposed by the AGT (Aston-Jones & Co-
hen, 2005), in contrast to other widely-used sustained atten-
tion tasks, such as the continuous performance test (CPT),
which provide temporally sparse data and only allow for the
distinction of on- and off-task behaviors (Fisher & Kloos,
2016; Rosvold, Mirsky, Sarason, Bransome Jr, & Beck, 1956;
Riccio, Reynolds, Lowe, & Moore, 2002), motivating our use
of continuous gaze data collected from children performing
TrackIt to fit and evaluate our HHMM model.

During trial After trialBefore trial

Figure 2: An example TrackIt trial. The Target object, in
this case a grey circle, is indicated before the trial by a red
circle. During the trial, all objects move in unpredictable
piecewise-linear paths and disappear after a random duration.
After the trial, the participant is asked to indicate the grid
cell the Target occupied before disappearing. A video of an
example TrackIt trial provided by Kim et al. (2020) can be
found at https://github.com/CMU-CDL/TrackIt/blob/
main/endogenous TrackIt example.mp4?raw=true.

Hierarchical Hidden Markov Model
Our model consists of a two-level hidden Markov chain, with
the higher level encoding 3 modes (Distractible, Optimally
Engaged, or Disengaged) and the lower level encoding 8
attentional states (Target, 6 Distractors, or Off-Task). The
higher-level Markov chain is parametrized by a time-invariant
transition matrix ΠModes ∈ [0,1]3×3 between the 3 modes and
an initial distribution πModes ∈ [0,1]3 on the 3 modes. We im-
pose no explicit assumptions on ΠModes and πModes, although,
because we do not expect transitions between modes to occur
too frequently, we will expect the diagonal values of ΠModes
to be much larger than the off-diagonal values. The lower-
level Markov chain over attentional states is parametrized by
a transition matrix that varies over time depending on which
of the three modes the participant is in. Within each mode,
the transition matrices (denoted ΠDistractible, ΠOptimally Engaged,
and ΠDisengaged) between attentional states are time-invariant,
as described below. Similarly, the initial distribution of at-
tentional states depends on the initial mode. Within the Dis-
tractible mode, the initial attentional state distribution is uni-
form over the 7 objects; within the Optimally Engaged mode,
the initial attentional state is always the Target; in the Disen-
gaged mode, the initial attentional state is always Off-Task.

In the Distractible mode, we do not expect the participant
to preferentially attend to the Target. Since, the 7 objects are
randomly sampled in each trial from the same set of possible
objects, we thus expect transitions between the 7 objects to
be uniformly likely on average; i.e., all diagonal entries of

https://github.com/CMU-CDL/TrackIt/blob/main/endogenous_TrackIt_example.mp4?raw=true
https://github.com/CMU-CDL/TrackIt/blob/main/endogenous_TrackIt_example.mp4?raw=true


the matrix are constrained to be identical, and all off-diagonal
entries of the matrix are also constrained to be identical:

ΠDistractible =


c1 c2 c2 · · · c2 0
c2 c1 c2 · · · c2 0
...

...
...

. . .
...

...
c2 c2 c2 · · · c1 0

︸︷︷︸
Target

1/7 ︸ ︷︷ ︸
6 Distractors

1/7 1/7 · · · 1/7 ︸︷︷︸
Off-Task

0

 ∈ [0,1]8×8.

(1)

In the Distractible mode, we assume, as in the original HMM,
that the participant’s gaze has a Gaussian distribution cen-
tered around the center of the object currently being attended.
The Gaussian is assumed to have the same covariance for
each object. Moreover, given the trajectories of objects in
TrackIt are, on average, horizontally and vertically uncor-
related, the horizontal and vertical components of the gaze
should also, on average, be uncorrelated, and so we assume
the covariance matrix of this Gaussian is diagonal:

Σ =

[
σx 0
0 σy

]
. (2)

In the Optimally Engaged mode, we assume the participant
attends only to the Target. We acknowledge that this assump-
tion is somewhat strong, and it is possible that participants’
gaze occasionally moves towards other objects even when
their attention is wholly on the Target (e.g., due to covert
attention). However, to keep the number of model parame-
ters small and to clearly distinguish the Distractible and Op-
timally Engaged modes, in this work, we maintain this as-
sumption, so that the transition matrix is simply

ΠOptimally Engaged =


1 0 0 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 ∈ [0,1]8×8. (3)

In the Optimally Engaged mode, as in the Distractible mode,
we assume that the participant’s gaze has a Gaussian dis-
tribution centered around the center of the object being at-
tended, in this case the Target; also, the covariance of the
Gaussian distribution is assumed to be identical to that in the
Distractible mode (Eq. 2).

Finally, in the Disengaged mode, we assume the partici-
pant’s attention is independent of the TrackIt objects, giving

ΠDisengaged =


0 0 · · · 0 1
0 0 · · · 0 1
...

...
. . .

...
...

0 0 · · · 0 1

 ∈ [0,1]8×8. (4)

Furthermore, in this mode, the participant’s gaze is assumed
to be uniformly distributed on the 1080px×1920px display.

Data Collection
We analyze a TrackIt and eye-tracking dataset originally
collected by Kim et al. (2020), publicly available on OSF
(https://osf.io/u8jbs/). Python code for reproducing

our analyses is available on GitHub (https://github.com/
sss1/hmm). Here, we briefly review the data collection pro-
cess of Kim et al. (2020). See Kim et al. (2020) for further
details regarding the experimental procedure, participant de-
mographics, TrackIt parameters, and data preprocessing.

Kim et al. (2020) recruited 50 typically-developing chil-
dren, aged 3.5-6 years (M = 4.60years, SD = 0.67years), 23
male and 27 female. Each child performed 10 TrackIt tri-
als, excluding an initial practice trial during which the ex-
perimenter explained the task. Because child eye-tracking
data contains many missing values, after linearly interpolat-
ing short (≤ 10 frames, ≈ 167ms) intervals of missing gaze
data, Kim et al. (2020) discarded all data from 8 children with
> 50% of eye-tracking data missing in > 5 of trials. This
left data from 42 children (420 total trials), aged 3.5-6years
(M = 4.65yrs, SD = 0.71yrs), 17 male and 25 female.

Model Implementation & Fitting
We implemented the model in Python using TensorFlow 2.5
(Abadi et al., 2016), specifically using the Hidden Markov
Model class provided by the TensorFlow Distributions library
(Dillon et al., 2017). The hierarchical model was imple-
mented as a “flattened” HMM with 9 states (one for each
of the 7 objects in the Distractible mode, one for the Op-
timally Engaged mode, and one for the Disengaged mode)
corresponding to possible mode-state pairs in the HHMM.

We trained the model in a fully unsupervised way by max-
imizing the likelihood of participant’s data. Specifically, at-
tentional mode and state sequences were fit jointly with all
11 model hyperparameters (6 free parameters in ΠModes, 2
free parameters in πModes, 1 free parameter in ΠDistractible,
and 2 free parameters in the Gaussian emission distribu-
tion), independently for each of the 42 participants. After
specifying the model in TensorFlow, the model parameters
were fit to a participant by maximizing the log-likelihood
of all 10 non-practice trials of data collected from that par-
ticipant. Optimization was performed using 103 iterations
of the Adam optimizer (Kingma & Ba, 2014) with Tensor-
Flow’s default learning rate (10−2). The following initial val-
ues were used for the optimization procedure. ΠModes was
initialized with all off-diagonal values 0.005 (corresponding
to an average mode switch every 3.33s). πModes was ini-
tialized with uniform initial probability 1/3 for each mode.
ΠDistractible was initialized with off-diagonal values c2 = .05
(corresponding to an average object switch every 0.33s). The
Gaussian emission distribution was initialized with variances
σx =σy = 100px. After training the model, each participant’s
most likely sequence of attentional modes and states in each
trial was computed by the Viterbi algorithm (Forney, 1973).

Results
Fitted HHMM Parameters
We first present values of the parameters of the HHMM fitted
to participants’ eye-tracking and TrackIt data. Table 1 gives
descriptive statistics for fitted HHMM parameters across the

https://osf.io/u8jbs/
https://github.com/sss1/hmm
https://github.com/sss1/hmm


Table 1: Univariate statistics for distributions (across 42 par-
ticipants) of each parameter of the HHMM learned from par-
ticipants’ data. DT, OE, and DE denote Distractible, Opti-
mally Engaged, and Disengaged modes, respectively.

Measure Mean Std. Dev. Min Max

πDT .27 .23 1×10−3 .89
πOE .64 .24 5×10−4 .995
πDE .09 .12 9×10−4 .57
ΠDT→DT .98 .009 .96 .997
ΠDT→OE .01 .01 3×10−5 .04
ΠDT→DE .004 .003 4×10−5 .02
ΠOE→DT .003 .001 1×10−4 .009
ΠOE→OE .99 .008 .95 .998
ΠOE→DE .004 .008 3×10−5 .04
ΠDE→DT .005 .003 7×10−6 .01
ΠDE→OE .01 .03 7×10−6 .22
ΠDE→DE .98 .03 .78 .998
c1 .995 .001 .992 .999
c2 .005 .001 .001 .008
σx 86.98 12.98 72.38 131.13
σy 93.18 13.71 75.01 126.12

42 participants. Broadly speaking, fitted values were con-
sistent with expectations for participants’ behavior. For ex-
ample, for all participants, for transitions both across modes
(ΠModes) and between objects within the Distractible mode
(ΠDistractible, given in terms of c1 and c2 in Eq. 1), the prob-
ability of staying within the same mode or state was much
greater than that of transitioning. Also, although there was
significant variation between participants, participants tended
to begin trials in the Optimally Engaged mode (πOE = 64%),
although they occasionally began trials Distractible (πDT =
27%) and rarely began trials Disengaged (πDE = 9%).

Optimally Engaged Mode and TrackIt Performance
We next tested the hypothesis that the Optimally Engaged
mode supports TrackIt task performance, as measured by Lo-
cation Accuracy. Consistent with this hypothesis, the propor-
tion of frames a participant spent in the Optimally Engaged
mode (according to the HHMM) was strongly correlated with
their Location Accuracy (r = .84, 95% CI (.72, .91), p< .001
for the null hypothesis of 0 correlation; Student (1908)). This
correlation was stronger than the correlation of .71 between
Location Accuracy and the proportion of frames in which the
participant was classified as attending to Target, though the
difference between these correlations was not significant.

Ablation Study
To evaluate the importance of each of the three HHMM
modes, we ran an ablation study, in which we compared the
fit of the full model to the fit of each of the three submodels
in which one of the modes is removed. To do this, for each
participant, we performed 10-fold cross-validation, splitting
trials into 9 training trials and 1 test trial, fitting the model
to the training trials, and then computing the likelihood of

Table 2: Results of ablation study. Means and standard er-
rors (across 42 participants) of log-likelihood on held-out test
trial (averaged across cross-validation folds and normalized
by trial duration), for each model. Higher (less negative) val-
ues indicate greater likelihood of observing the held-out test
data under each model, after fitting to the same participant’s
training data. Bold values indicate log-likelihoods statisti-
cally indistinguishable from those of the best model.

Model log-Likelihood (± std. err)

Full Model −9.799±0.030
No Distractible Mode −9.983±0.028
No Optimally Engaged Mode −9.932±0.028
No Disengaged Mode −9.803±0.029

the test trial’s gaze data. Since the duration of TrackIt trials
varied randomly and the log-likelihood of a trial decreases
roughly linearly with the duration of that trial, we normal-
ized each trial’s log-likelihood by dividing by the number of
frames in that trial. The mean normalized test likelihoods of
the full model and each submodel are reported in Table 2.

The results indicate that the full model and submodel with-
out the Disengaged mode both fit significantly better than
submodels without the Distractible or Optimally Engaged
modes, suggesting that the Distractible and Optimally En-
gaged modes both explain significant proportions of partic-
ipants’ behavior. However, fits of the full model and the
submodel without the Disengaged mode were not statistically
distinguishable. This is likely due to the fact, discussed be-
low, that participants spent far less time in the Disengaged
mode than in Distractible or Optimally Engaged modes.

Developmental Results
We next used the HHMM to investigate how the proportion of
time participants spend in each mode changes with age. Lin-
ear regressions, illustrated in Figure 3, indicated significant
effects of Age on the proportions of time spent in the Dis-
tractible mode (t(40) =−4.81, p < .001, R2 = .41) and in the
Optimally Engaged mode (t(40) = 4.21, p < .001, R2 = .37),
but not on the proportion of time spent in the Disengaged
mode (t(40) = 0.49, p= .60, R2 = .02). These results, specif-
ically the effects of Age on the proportions of time spent in
the Distractible and Optimally Engaged modes, were consis-
tent with the hypotheses described in the Introduction.

Discussion
In the context of the TrackIt task, we implemented a hierar-
chical HMM model of attentional modes over time and fit the
model’s parameters using participants’ gaze data. We found
a strong correlation between the model’s Optimally Engaged
mode and participants’ task performance, measured by Lo-
cation Accuracy. Our ablation study suggested that the Dis-
tractible and Optimally Engaged modes both played signifi-
cant roles in explaining participant behavior, in terms of the
model’s ability to predict a participant’s gaze behavior on
held-out trials using data from the participant’s other trials.
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Figure 3: Proportion of time spent in each mode, according to the HHMM, as a function of participant age. Shaded regions
indicate bootstrapped 95% confidence bands.

In contrast, the Disengaged mode did not provide signifi-
cant explanatory power, and predictions from our model sug-
gested that participants spend a very small proportion of time
(< 5% of frames) in the Disengaged mode. A simple expla-
nation for this is that the TrackIt task was short and highly
engaging, even for young children. However, based on man-
ual analysis of the same data by human coders, (Kim et
al., 2020) suggested that participants spent significantly more
time (14% of frames) in an “Off Task” state, in which gaze
was decoupled from the trajectories of any TrackIt objects.
Anecdotally, from visualizations of children’s gaze behav-
ior, we observed that children sometimes exhibited a “zoning
out” behavior, in which their gaze remained fixated at a sin-
gle point on the screen, independent of moving TrackIt ob-
jects; this was not captured by the Distractible mode in our
model, which typically captured only when participants’ gaze
moved far away from any of the TrackIt objects (e.g., to the
edge of the display, away from the TrackIt grid). This sug-
gests the HHMM might underestimate how much time partic-
ipants spend in the Disengaged mode. A more refined model
of gaze behavior in the Disengaged state (e.g., incorporat-
ing gaze velocity to better distinguish tracking an object from
Disengaged gaze that, by chance, falls near a object) might
help address this. Overall, more work is needed to understand
whether children enter the Disengaged mode while perform-
ing TrackIt, and, if so, how they behave in this mode.

Our developmental analyses supported both of our hy-
potheses: time spent in the Distractible mode decreased with
age, and time spent in the Optimally Engaged mode increased
with age. Since the HHMM modes were motivated by the
Adaptive Gain Theory (AGT) of LC-NE function (Aston-
Jones & Cohen, 2005), which asserts that the Distractible
mode serves the purpose of promoting exploration, these find-
ings are consistent with the possibility that documented de-
creases in exploratory behavior with development over the
course of early childhood (Mehlhorn et al., 2015; Blanco &
Sloutsky, 2020b; Gopnik, 2020) may be explained by func-
tional changes in the LC-NE system. Since anatomy of the
LC is believed to mature during infancy, much earlier than
the age range studied in this paper (McLean & Shipley, 1991;
Marshall, Christie, Finlayson, & Williams, 1991; Nakamura

& Sakaguchi, 1990), we hypothesize that such changes in
LC function may stem from changes in higher-order brain
regions, such as prefrontal cortex, that both undergo devel-
opment in this age range (Casey, Giedd, & Thomas, 2000;
Diamond, Briand, Fossella, & Gehlbach, 2004; Posner &
Rothbart, 2007) and modulate LC activity (Jodoj, Chiang, &
Aston-Jones, 1998; Aston-Jones & Cohen, 2005).

Further work is needed to strengthen the connection we
hypothesize between modes of attending behavior in TrackIt
and modes of LC activity as proposed by the AGT. Since
the LC is small and deep within the brain, most studies di-
rectly relating LC activity to behavior have relied on inva-
sive electrophysiological recordings in non-human primates
(Rajkowski, 1993). However, small fluctuations in pupil di-
ameter have also been shown to be tightly coupled to LC ac-
tivity (Mathôt, 2018), and so a feasible approach to investi-
gating this in humans may be through measurement of pupil
diameter as participants perform TrackIt; if the modes of the
HHMM correspond well to those of the AGT, then we would
expect to see distinct patterns in participant’s pupil dilation
corresponding to their mode as identified by the HHMM.

Conclusion

Although much of attention research has characterized sus-
tained attention through the degree of engagement with a
given task, attention is not merely a mechanism for focus-
ing intently on a single task, but also a continuously operat-
ing process by which humans can balance multiple compet-
ing priorities by interweaving them over time. Attentional
modes, whose role may be unclear within the context of per-
formance on a single task, may play a central role in guiding
attention to adaptively subserve behavior over time. This pa-
per presented a computational model allowing for the identi-
fication and measurement of certain attentional modes, moti-
vated by the Adaptive Gain Theory of the LC-NE system, and
provided evidence that changes in the employment of these
modes might explain changes in the allocation of attention
over the course of young children’s development.
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