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Abstract

Eye-tracking provides an opportunity to generate and analyze
high-density data relevant to understanding cognition. How-
ever, while objects in the real world are often dynamic, eye-
tracking paradigms are typically limited to assessing gaze to-
ward static objects. In this study, we propose a generative
framework, based on a hidden Markov model, for using eye-
tracking data to analyze behavior in the context of multiple
moving objects of interest. We apply this framework to ana-
lyze data from a recent visual object tracking task paradigm,
TrackIt, for studying selective sustained attention in children.
We also present a novel ‘supervised’ variant of TrackIt that we
use to tune and validate our model, while providing insights
into the visual object tracking abilities of children and adults.

Keywords: eye-tracking; visual object tracking; hidden
Markov model; TrackIt; selective sustained attention

Introduction

Eye-tracking provides temporally rich behavioral data (gaze)

that is closely linked to many cognitive functions. It has been

widely used to study cognition, in diverse research areas in-

cluding category learning (Rehder & Hoffman, 2005), visual

attention (Doran, Hoffman, & Scholl, 2009), sports exper-

tise (Smuc, Mayr, & Windhager, 2010), visual perception

(Gegenfurtner, Lehtinen, & Säljö, 2011), implicit bias and

stereotype (Pyykkönen, Hyönä, & van Gompel, 2009), lan-

guage processing (Barr, 2008) and psychological disorders

such as schizophrenia (Holzman et al., 1974). Beyond psy-

chology, eye-tracking applications include safety evaluation

in driving (Palinko, Kun, Shyrokov, & Heeman, 2010), us-

ability studies in human-computer interaction (Jacob & Karn,

2003), and diagnosis of Alzheimer’s disease (Biondi, Fernan-

dez, Castro, & Agamenonni, 2017).

Most of these applications rely on the extensive work

that has been done based on two important components of

gaze: fixation (maintenance of gaze on a single location)

and saccade (quick movement of gaze between two fixa-

tions) (Cassin, Solomon, & Rubin, 1984). There exist well-

documented standards for identifying and analyzing fixa-

tions and saccades in eye-tracking data (Duchowski, 2017),

and meta-analysis has shown that the most commonly used

eye-tracking measures are number of fixations, mean fixa-

tion duration, and gaze duration (a function of multiple fix-

ations) (Jacob & Karn, 2003). These have been incorporated

into user-friendly analysis software built into commercial

eye-trackers, and there also exists open-source software for
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fixation- and saccade-based analyses of generic eye-tracking

data (e.g., Dink and Ferguson (2015)). This has facilitated

adoption of fixation- and saccade-based eye-tracking meth-

ods as standard tools for investigating cognition and behavior.

While fixations and saccades describe most human eye

movement in response to stationary or rapidly moving vi-

sual stimuli, tracking of smoothly moving stimuli obeys a

different dynamic, namely smooth pursuit – slow eye move-

ment that maintains the image of a moving object on the

fovea (Cassin et al., 1984). Far less work with eye-tracking

has studied smooth pursuit, in part due to a relative lack of

analysis tools. A recent 400-page review of eye-tracking

methodology mentions smooth pursuits only thrice and notes

that ‘a robust and generic algorithm for their detection is cur-

rently an open research problem’ (Duchowski, 2017, p. 176).

In this paper, we propose a novel hidden Markov model

(HMM) approach to analyzing eye-tracking data in the con-

text of multiple moving objects of interest. Given continuous

gaze data collected from a subject tracking moving objects

with known positions over time, our model can accurately

determine the object being tracked at each time point. Since

smooth pursuit is intimately tied to tracking smoothly moving

objects, this model effectively provides a way of analyzing

smooth-pursuit movement. We anticipate that our model may

be useful for researchers in cognitive science and related ar-

eas and have made a Python implementation freely available.

A Hidden Markov Model Approach

Hidden Markov Models (HMMs) are a popular generative

model for time series data, in which observed data is assumed

to be drawn, at each time point, from a distribution depending

on an unobserved hidden state. An HMM is a natural fit for

the problem at hand; at each time point t, the subject is look-

ing at something S(t) (the hidden state), and we observe eye-

tracking data X(t) that is primarily a function of S(t) and ran-

dom noise. Unlike simpler models that consider data at each

time point independently, an HMM mitigates noise and eas-

ily handles complex scenarios such as object collisions (when

multiple objects briefly occupy the same space), without los-

ing the fine temporal resolution of eye-tracking data.

Selective Sustained Attention and TrackIt

Selective sustained attention (SSA) is an important cognitive

process that enables everyday functioning and task perfor-

mance by allowing us to: 1) choose components of our en-



vironment to process at the exclusion of others and 2) main-

tain focus on those components over time. SSA relies on both

endogenous factors (e.g., internal goals) and exogenous fac-

tors (e.g., stimulus salience), and studying how these factors

develop and interact in guiding attention during childhood is

of special interest for SSA development research (O’Connor,

Manly, Robertson, Hevenor, & Levine, 2004).

TrackIt is a child-appropriate visual object-tracking task

recently developed to measure SSA, that can capture differ-

ential contribution of exogenous and endogenous control of

attention and allow flexible assessment over a range of devel-

opmental years (including pre-school years, for which there is

a relative lack of appropriate SSA measures), with parameters

for adjusting difficulty with age (Fisher, Thiessen, Dickerson,

& Erickson, 2013; Fisher, Thiessen, Godwin, Kloos, & Dick-

erson, 2013; Kim, Vande Velde, Thiessen, & Fisher, 2017).

In the TrackIt task, participants visually track a single target

object moving about on a grid, among other moving distrac-

tor objects. At the end of each such trial, all objects vanish

from the grid, and participants are asked to identify the final

grid cell location the target occupied before vanishing.

Prior studies using TrackIt have measured task perfor-

mance mainly in terms of this final response – whether the

final grid cell was correctly identified. However, this mea-

sure has several limitations. For example, Kim et al. (2017)

suggested that many behavioral ‘errors’ may be attributable to

subjects’ limited visual resolution when identifying the final

grid cell location of the target (thereby clicking an adjacent

cell). Also, this measurement is made after task and only in-

directly tells us what participants do during task.

To address these limitations of data available directly from

TrackIt, we began collecting eye-tracking data. Analyzing

these rich data, however, involves a non-trivial technical chal-

lenge, namely that of robustly identifying the object a partic-

ipant is tracking from noisy eye-tracking data, even when ob-

jects are moving, crowded, and potentially overlapping. This

problem motivated the methods proposed in this paper, which

we present in the belief that they may be useful for analyzing

eye-tracking data in more general experimental contexts.

Related Work

There has been prior work on analyzing eye-tracking data

from behavioral studies using HMMs. Kärrsgård and Lind-

holm (2003) used HMMs for an eye-typing application (in

which users form words by fixating on characters on a dis-

play). More recently, Haji-Abolhassani and Clark (2013,

2014) used HMMs to predict the visual tasks being per-

formed by subjects viewing a painting. Finally, a substan-

tial line of work has used HMMs to study eye movement

patterns involved in face recognition (Chuk, Chan, & Hsiao,

2014, 2015; Chuk, Chan, Shimojo, & Hsiao, 2016; Chuk,

Crookes, Hayward, Chan, & Hsiao, 2017; Chuk, Chan, &

Hsiao, 2017). A MATLAB toolbox has also been published

implementing these analyses (Coutrot, Hsiao, & Chan, 2017).

These studies share several related features that contrast

from the current study. First, the stimuli presented are static

images. While Coutrot et al. (2017) used conversational

video stimuli, the regions of interest, which were the faces

of speakers, were essentially stationary relative to the dis-

play. In contrast, our stimuli are videos of moving objects,

and so the parameters of our HMMs evolve over time as ob-

jects move. Second, these prior analyses are all based on

first identifying fixations and then modeling these fixations

using HMMs, while our HMMs directly model continuous

eye-tracking data; the latter is more appropriate for measuring

smooth pursuit, which is not composed of fixations. Finally,

these prior studies use repetitive tasks (e.g., face recognition

with aligned face stimuli) or identical tasks performed by dif-

ferent subjects, so that many identically distributed samples

can be combined (across stimuli or across subjects) to learn a

single HMM. This was important because these studies were

studying where most humans gaze when presented with cer-

tain stimuli. In our case, object trajectories are randomly

generated before each trial, and we are interested in study-

ing broad patterns behavior, independent of the exact stimuli

presented. As a result, each trial is distinct, and an HMM

must be fit for each trial using data from only that trial. For-

tunately, positions of objects of interest over time are known,

and we can build an HMM around this fact.

Contributions The contributions of this work are: 1) We

propose a novel HMM approach for analyzing eye-tracking

data in the presence of moving visual stimuli. 2) We validate

our model on data from a variant of TrackIt (called super-

vised TrackIt). 3) We apply the HMM to analyze data from

the original TrackIt experiment (which we call unsupervised

TrackIt) and show that it provides a robust analysis method.

Methods

Source Code and Reproducibility A TrackIt executable

(including supervised and unsupervised variants) and its

source code are freely available at http://www.psy.cmu

.edu/˜trackit/. Python scripts for reproducing our anal-

yses, results, and figures, as well as the eye-tracking and

TrackIt data used, are available at https://github.com/

sss1/eyetracking. The eye-tracking analysis accepts a

generic CSV data format containing timestamped (x,y) co-

ordinates, making it compatible with any standard eye-

tracker. Also included is a Python executable for collect-

ing data in this format using the SMI RED-250 mobile eye

tracker. Finally, videos of example unsupervised and super-

vised TrackIt trials can be found at https://github.com/

sss1/eyetracking/tree/master/videos.

Hidden Markov Model Specification

Overview We model the subject as being, at each time

point, in one of N states S = {s1, ...,sN}, corresponding to

the N visible objects of interest; state s j indicates the subject

tracking the jth object. When in the state s j, we model the

subject’s eye-tracking data with a Gaussian emission distri-

bution centered at the center of the jth object. In the case of

TrackIt, if ND denotes the number of distractors (in our stud-

http://www.psy.cmu.edu/~trackit/
http://www.psy.cmu.edu/~trackit/
https://github.com/sss1/eyetracking
https://github.com/sss1/eyetracking
https://github.com/sss1/eyetracking/tree/master/videos
https://github.com/sss1/eyetracking/tree/master/videos


ies, ND = 4), N = ND +1 (1 target, ND distractors). Figure 1

illustrates the components of our model in this context.

Notation Spatial coordinates are measured in pixels (≈
0.02◦ of visual field) with (0,0) denoting the bottom left

corner of the display. xmin,xmax,ymin, and ymax respectively

denote the minimum and maximum horizontal and vertical

coordinates observable by the eye-tracker. The observable

region R := [xmin,xmax]× [ymin,ymax] is a rectangle including

the entire grid traversable by TrackIt objects. Within the con-

text of any particular trial, T denotes the trial length (in 60Hz

frames), and t ∈ [T ] := {1,2, ...,T} indexes individual frames.

Hidden State Model The sequence of underlying hidden

states is modeled as a Markov chain with a fixed initial distri-

bution π ∈ [0,1]S (such that ∑S∈S πS = 1) and transition ma-

trix Π ∈ [0,1]S×S (such that, for each S ∈ S , ∑S′∈S πS,S′ = 1).

Since, in this study, we are interested in using our model to

classify participants’ behavioral states over time, to avoid bi-

asing the model, π is constrained to be uniform (i.e., πs1
=

· · · = πsN
), and Π is constrained to have identical diagonal

values c1 and identical off-diagonal values c2; i.e.,

Π =











c1 c2 · · · c2

c2 c1 · · · c2

...
...

. . .
...

c2 c2 · · · c1











.

We set c1 = 599
600

and c2 = (1− c1)/N, corresponding to an

average of 1 uniformly random transition per 600 frames (≈
10s); this choice is due to the tuning procedure used to learn

the model hyperparameters (see ‘Supervised TrackIt’).

Emission Distributions Let S∗ : [T ] → S denote the se-

quence of states assumed by the subject. At each time point,

if the subject is in the state corresponding to tracking the ob-

ject s, the model assumes the eye-tracking data of the subject

is distributed according to an isotropic Gaussian centered at

the center of S; that is, for each t ∈ [T ] and s ∈ S ,

E(t)|S∗(t) = s ∼ N
(

Xs(t),σ
2I2

)

,

where E : [T ]→ R denotes the eye-tracker trajectory, and, for

each S ∈ S , XS : [T ]→ R denotes the trajectory of the object

corresponding to state S. The spherical standard deviation σ,

which we model as common across objects, is an important

hyperparameter whose selection is discussed below.

Model Fitting Because, when analyzing eye-tracking data

from TrackIt, we do not a priori know the true state sequence

S∗, the model is trained in an unsupervised manner, via max-

imum likelihood estimation (MLE); that is, the estimated se-

quence of states is that which maximizes the likelihood of

the observed eye-tracking data. An HMM’s MLE can be effi-

ciently computed using the Viterbi algorithm (Forney, 1973).

Parameter Selection The most influential parameter in the

model is the spherical standard deviation σ of the Gaussian

emission distributions. To calibrate σ, we used data from a

novel ‘supervised’ variant of TrackIt (described below), in

which we are confident about the true state at most time points

and can hence estimate model performance. We tuned σ by

grid-search over 50 logarithmically spaced values of σ be-

tween 10 and 104 pixels (≈ 0.2◦-24◦ of visual field), selecting

the value that maximized empirical accuracy of predicting the

true state. We tuned σ separately for adults and children, as

we expect tracking precision to improve with development.

Observation 1 Observation 2 Observation 3

S(1) S(2) S(3)

X(1) X(2) X(3)

Hidden State 1 Hidden State 2 Hidden State 3

(a) (b)

Figure 1: (a) graphical model schematic of HMM (b) example

conditional distribution of X(t) given S(t) = “Blue Moon”.

Unsupervised TrackIt

In the unsupervised (original) TrackIt task, participants visu-

ally track a single target object as it moves on a 4× 4 grid,

among 4 moving distractor objects. For each trial, the target

and distractor objects are randomly selected without replace-

ment from a set of unique objects spanning 9 different shapes

with 9 different color possibilities (81 possible objects). See

Figure 2 for an example. At the beginning of each trial, ob-

jects appear on a grid, centered in random, distinct grid cells,

and the target object is indicated by a red circle around it.

Upon starting the trial (by button press), the red circle dis-

appears, and the objects begin to move in piecewise-linear

trajectories from grid cell to grid cell at a constant speed (500

pixels, or 10◦, per second). At the end of each trial, all ob-

jects vanish, and the participant is asked to indicate the grid

cell the target object last occupied before disappearing.

The path of each object is randomized, with the constraint

that the target has to be in the center of a grid cell at the end

of the trial, to reduce ambiguity for the participant in deter-

mining its final location. Due to this constraint, trial length is

not fixed, but varies slightly between trials (to allow the target

to reach the center of a grid cell), with a minimum of 10s.

Grid size, object speed, number of distractors, minimum

trial length, etc. are experimenter-selected TrackIt parame-

ters; the above values were suggested by prior work as appro-

priate for young children (Kim et al., 2017).

Before Trial During Trial After Trial

Figure 2: The unsupervised TrackIt task.



Supervised TrackIt

To tune the parameter σ and evaluate model performance, we

designed a ‘supervised’ variant of TrackIt, in which we know,

with relatively high confidence, what object the participant is

looking at (i.e., the ‘true state’) at most time points. To do

this, we made the target flash white repeatedly (for 100ms,

separated by 200ms) during the entire trial, making it salient

and easy to track (without relying on endogenous SSA). Par-

ticipants were instructed to follow the flashing object with

their eyes. Rather than using a single target for the entire trial,

the flashing target changed at random intervals (uniformly be-

tween 5s and 15s). To allow multiple target changes, trials

were lengthened to a minimum of 30s (from 10s in unsuper-

vised TrackIt). Changing the target within trials was essen-

tial to ensure the fitted model could accurately detect transi-

tions between objects; without this, the model would learn to

always estimate a single most likely target during each trial

(i.e., the selected σ would be too large). As in unsupervised

TrackIt, the target was circled in red and flashed before trial

start, so participants could begin the trial tracking the correct

object. Other parameters and preprocessing steps were iden-

tical to the unsupervised TrackIt setup. TrackIt recorded the

flashing target’s identity in each frame, allowing us to com-

pare model predictions to this ‘ground truth’. Some error is

introduced by the delay with which participants transition af-

ter the blinking object changes. Better results might be ob-

tained by ignoring a few frames after each change when mea-

suring error, but our results are robust without doing this.

Experimental Procedure and Data

Subjects For supervised TrackIt, 15 healthy adult volun-

teers and 15 typically developing 5-year-olds each performed

12 trials, including 2 initial practice trials during which the

experimenter explained the task. Practice trials were not

analyzed, giving 10 usable trials/subject. For unsupervised

TrackIt, 10 healthy adult volunteers each performed 5 trials

and 10 typically developing 3-year-olds each performed 3.

Materials and Apparatus Stimuli were presented on a

Lenovo laptop screen with physical dimensions 19.1cm ×
34.2cm and pixel dimensions 1080 × 1920 pixels (approx-

imately 22◦× 40◦ of visual field). Subjects were seated at a

desk facing the screen with their heads about 0.5m away from

the screen. The SMI RED-250 mobile eye tracker was used

to record continuous gaze positions at 60Hz during TrackIt

trials. After using SMI’s iView X software to calibrate the

eye-tracker, we used a custom Python script to collect eye-

tracking data synchronized with TrackIt.

Data Preprocessing Child eye-tracking data contains a

large proportion of missing values (due to children looking

away from task or moving excessively), and so we prepro-

cessed data to mitigate this. Whenever a short interval of at

most ≤ 10 consecutive frames (≈ 16.7ms) of eye-tracking

data was missing, we linearly interpolated gaze during those

frames from non-missing data immediately before and after

that interval. Next, we discarded trials missing eye-tracking

data for more than 50% of frames (53 child trials and 5 adult

trials). Finally, we discarded data from subjects for whom

more than 50% (> 5 trials) had been discarded (3 children).

After preprocessing, 86 child trials and 145 adult trials re-

mained. Even after these steps, intervals of (> 10 frames of)

eye-tracking data may still be missing. For these frames, the

HMM automatically assigns a ‘null’ state, and the frames be-

fore and after each such interval are fit independently by the

Viterbi algorithm. When evaluating model performance, we

report results both treating these frames as incorrect classi-

fications (giving a conservative ‘worst-case’ lower bound on

performance) and ignoring these frames (giving a less con-

servative ‘average-case’ performance estimate).

Results

Model Validation (Supervised Data)

We compared our HMM’s performance to that of a ‘naive’

model that assumed that, at each time point, the subject was

looking at the object closest to their gaze. This model is

equivalent to a variant of our HMM with uniform transition

matrix Π, thus ignoring the underlying Markov model and us-

ing only emission probabilities. Figure 3 shows the HMM’s

accuracy, as a function of σ, along with that of the naive

model and ‘chance’ of 20% (1 out of 5 total objects).

While both models perform better on adult data than on

child data, curves are qualitatively similar for both popula-

tions. For very small σ (e.g., < 100 (≈ 2◦)), the cost of se-

lecting an object even slightly further than the closest object

outweighs the cost of transitioning states, and so the HMM

behaves essentially like the naive model. For very large σ

(e.g., > 2000 (≈ 49◦)), the emission distributions of all ob-

jects become similar, and the HMM may fail to ever transi-

tion, performing worse than the naive model. As we expected,

the optimal σ for children was much larger than that for adults

(870 pixels (≈ 18◦) versus 490 pixels (≈ 10◦)), reflecting less

precise visual tracking of the target object. However, for both

adults and children, in the large range of σ ∈ [102,103] (≈ 2◦-

21◦), the HMM outperforms the naive model.

This analysis shows that superiority of the HMM decoder

depends on the value of σ, albeit quite robustly. Hence, to

objectively evaluate decoder performance independently of

tuning, we next used leave-one-out cross-validation (holding

out 1 trial per fold, maximizing accuracy over σ on remaining

trials, and measuring accuracy on the held-out trial). Table 1

shows that the HMM provides a large mean improvement (≥
16.1% in adults, ≥ 20.9% in children) over the naive model.

SSA Performance Evaluation (Unsupervised Data)

We next applied our HMM and the naive model to data from

the original unsupervised TrackIt experiment, this time with

the goal of measuring subject performance (rather than model

performance). As shown in Table 2, task performance as

scored by the HMM is far higher than that as scored by the

naive model, and this difference was statistically significant
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Figure 3: Semi-log plot of HMM, naive, and chance accuracies as functions of HMM parameter σ. Dashed lines indicate

bootstrapped 95% confidence bands. The point of optimal HMM performance (our suggested value of σ) is indicated by a

triangle. Only accuracies on non-missing frames are shown, but curves computed using all frames were qualitatively similar.

Table 1: Proportion of supervised frames correctly classified.

Population HMM (95% CI) Naive (95% CI)

All frames

Adult 91.4%(2.7%) 75.3%(2.5%)
Child 52.7%(3.9%) 31.8%(2.3%)
Non-missing/interpolated frames only

Adult 93.5%(1.3%) 76.8%(1.5%)
Child 60.7%(2.2%) 36.8%(2.1%)

(p < 0.05) in all conditions except in the All Different con-

dition in children. This suggests that the naive model sig-

nificantly underestimates task performance, losing signal that

may be important for downstream data analyses.

While the main contrast (child performance between All

Same and All Different conditions) was not statistically sig-

nificant, the direction of difference is consistent with our hy-

pothesis that 3-year-olds have more limited endogenous con-

trol of SSA. This dataset was quite small, and we believe that

collecting a larger dataset would show this contrast conclu-

sively. Further work will also explore performance trends

(over trial duration) from the output of the HMM model.

Conclusions & Future Directions

This paper proposed a novel analysis using a hidden Markov

model for eye-tracking data in the presence of multiple mov-

ing objects. We validated and tuned this model in a novel

supervised object-tracking task, demonstrating robustness to

hyperparameter choices, and we used the model to analyze

data from the TrackIt task for measuring SSA in children. The

HMM collapses noisy spatiotemporal eye-tracking data into a

sequence of a small number of states, simultaneously denois-

ing the data and making it more behaviorally interpretable.

The model is quite flexible; input data can be from any vi-

sual stimulus with moving objects or areas of interest, and

Table 2: Proportion unsupervised frames classified on target.

Population Condition HMM (95% CI) Naive (95% CI)

All frames

Adult All Same 85.4%(5.4%) 62.9%(6.4%)
Adult All Diff 90.7%(4.1%) 65.4%(5.4%)
Child All Same 30.1%(6.0%) 19.3%(3.9%)
Child All Diff 21.8%(6.3%) 13.6%(3.7%)
Non-missing/interpolated frames only

Adult All Same 92.9%(3.4%) 68.4%(4.3%)
Adult All Diff 97.4%(1.4%) 70.2%(3.0%)
Child All Same 48.8%(7.6%) 33.3%(4.9%)
Child All Diff 37.3%(7.0%) 26.5%(3.4%)

many analyses can be performed on its output. For example,

while we only studied the proportion of time spent on target,

the HMM can also identify when during the trial children are

distracted, and, when, if at all, children are able to return at-

tention to the target, allowing us to study the time course of

SSA and its possible self-regulatory mechanisms.

The main constraint of the proposed method is that it re-

quires knowing positions of objects of interest. While avail-

able for artificially-generated stimuli, these may be difficult to

obtain in studies that are not computer-based or use videos of

natural scenes. A solution may be to combine an HMM with

algorithms for automated object detection in video, which are

becoming widely-available (Huang et al., 2017).

Towards a Cognitive Model of Object Tracking Our de-

coder is based on a generative model of eye-tracking data.

This model may be a suggestive first step towards linking eye-

tracking data to the cognitive process of visual object track-

ing, and, perhaps, to the higher-level construct of visual SSA.

Using such a model to study subject performance during task

(as in this study) requires fixing the HMM with uniform ini-

tial and transition probabilities, so that the model does not



intrinsically prefer some states over others (e.g., in the case

of TrackIt, the model should treat the target identically to the

other objects). Conversely, a realistic cognitive model should

have non-uniform probabilities (e.g., preferring to follow the

target over distractors, by virtue of SSA). Hence, a major step

in developing such a cognitive model would be fitting its pa-

rameters to behavioral data. For Gaussian HMMs, this can be

done using expectation maximization (Bilmes et al., 1998),

which we suggest as a fruitful direction for future work.
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Kärrsgård, I., & Lindholm, A. (2003). Eye movement track-

ing using hidden Markov models. Chalmers tek. högsk.

Kim, J., Vande Velde, A., Thiessen, E. D., & Fisher, A. V.

(2017). Variables involved in selective sustained attention

development: Advances in measurement. In Proceedings

of the 39th annual conf. of the Cognitive Science Society.

O’Connor, C., Manly, T., Robertson, I., Hevenor, S., &

Levine, B. (2004). An fMRI study of sustained attention

with endogenous and exogenous engagement. Brain and

Cognition, 54(2), 113–135.

Palinko, O., Kun, A. L., Shyrokov, A., & Heeman, P. (2010).

Estimating cognitive load using remote eye tracking in a

driving simulator. In Proceedings of the 2010 symposium

on eye-tracking research & applications (pp. 141–144).
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