
Submission PDF

Adjustment in tumbling rates improves bacterial
chemotaxis on obstacle-laden terrains
Sabrina Rashid1, Zhicheng Long2, Shashank Singh1, Maryam Kohram2, Harsh Vashistha2, Saket Navlakha3, Hanna
Salman2, Zoltán Oltvai2, Ziv Bar-Joseph1

1Carnegie Mellon University, 2University of Pittsburgh, 3The Salk Institute for Biological Studies

Submitted to Proceedings of the National Academy of Sciences of the United States of America

The mechanisms of bacterial chemotaxis have been extensively
studied for several decades, but how the physical environment
influences the collective migration of bacterial cells remains less
understood. Previous models of bacterial chemotaxis have sug-
gested that the movement of migrating bacteria across obstacle-
laden terrains may be slower as compared to terrains without
them. Here, we show experimentally that the size or density of
evenly spaced obstacles do not alter the average exit rate of E.
coli cells from microchambers in response to external attractants,
a function that is dependent on intact cell-cell communication. We
also show, both by analyzing a revised theoretical model and by
experimentally following single cells, that the reduced exit time
in the presence of obstacles is a consequence of reduced tumbling
frequency that is adjusted by the E. coli cells in response to the
topology of their environment. These findings imply operational
short-term memory of bacteria while moving through complex
environments in response to chemotactic stimuli and motivate
improved algorithms for self-autonomous robotic swarms.
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Communication and coordination play a major role in the
ability of cells to adapt to ever changing environmental condi-
tions. An example of such coordinated biological process is bac-
terial chemotaxis. Detailed molecular studies have identified key
proteins and signaling pathways involved in this process [1 (and
references therein), 2, 3] while other studies have focused on the
mode by which individual cells process information and secrete
various signals [4] and on pairwise communication between cells
[5]. In previous work, we reported experimental evidence for cell-
cell communication that significantly enhances the chemotactic
migration of bacterial populations. Specifically, we have found
that E. coli cells respond to a gradient of chemoattractant not
only by biasing their own random-walk swimming pattern but
also by actively secreting a strong chemoattractant into the ex-
tracellular medium that amplifies the migration of cells distant to
the attractant source. Although no specific ligand has been fully
identified, a number have been hypothesized to be involved in the
secretion process [6].

To gain insight into the ecosystem-level organization of
chemotaxis, mathematical models have been developed to de-
scribe the collective behavior of cells [7-11] and simulations in-
dicated that these capture several aspects of the observed be-
havior [12-13]. One of the first models developed for bacterial
chemotaxis is the Keller-Segel PDE model [11] that describes
the concentration profiles of bacteria and attractant over time
using coupled differential equations. Later models were based
on experiments from Brown and Berg et al. [14]. These models
made the duration of bacterial trajectory (following a tumbling
step) at a specific direction a function of the perceived attractant
gradient [9-10]. However, these studies did not account for the
cooperative aspects of foraging bacteria. More recent models,
developed by Shklarsh et al [12] and Singh et al [13] attempted
to mathematically and computationally account for the collective
aspects of this process either by using an extended differential
equations mode or by modeling the process as a distributed gradi-

ent descent (DGD). Simulations based on these models showed
that communication can indeed improve the average speed in
which cells reach the attractant source.

In addition to these mathematical models developed to ex-
plain chemotaxis, this process also serves as the basis for sev-
eral distributed computing swarm based methods. For example,
robotic swarmmethods for searching for trapped victims in emer-
gency situations are often based on chemotaxis [15-16]. In such
applications, robots integrate signals from victims (either based
on smell or sound) with visual information from neighboring
robots to determine their search route.

While these mathematical and computational models are
based on studies that have considered cell migration in response
to chemoattractants, relatively little work has focused on the
ability of cells to operate in more complex environments, includ-
ing when faced with obstacles and noise. Previously developed
models for collective bacterial behavior do not take into account
the impact, and feedback, from the physical environment on the
cell state. For example, when bacteria traverse obstacle-laden
surfaces, current models indicate that exit times would increase
with increased obstacle coverage since obstacles limit the ability
of cells to select an optimal route.

To test if this is indeed the case, we performed experiments
in which we studied the movement of E. coli cells in microfluidic
chambers containing physical obstacles. We varied the obstacle
size or the overall surface coverage by obstacles. Contrary to
predictions of current models, we found that average bacterial
exit times remain nearly constant regardless of the specific ob-
stacle coverage or size. We found that two changes in one of

Significance

Bacterial chemotaxis is the process of bacterial migration in
the direction of food and/or chemo-attractant, and away from
chemo-repellents. Several models have been proposed for this
process and these predict that their migration across obstacle-
laden terrains would be slower when compared to terrains
that do not contain obstacles. However, our experiments show
that the presence of obstacles does not alter the average
time it takes E.coli cells to reach the food source. We show,
both theoretically and experimentally, that a modified model
that relies on adaptive movement following collisions with
obstacles accurately explains this surprising result. These find-
ings imply operational short-term memory of bacteria and
motivate improved algorithms for self-autonomous robotic
swarms.
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Fig. 1. Simulation results of current chemotaxis models. We tested several
different bacterial chemotaxis models simulating cells faced with varying
obstacle coverage within an attractant gradient. All models predicted much
slower escape times when the environment contains more obstacles. (a)
Terrain model for simulations of bacterial food search. Obstacles are placed
in a grid and the attractant source is at the bottom right corner, as in the
experimental setup. Black dots denote bacteria (agents) (b) Adaptive step
size model based on Brown-Berg experiment [14, 17] (c) Keller-Segel model
[11] (d) Shklarsh model [12] (e) DGD model [13]. It is evident, that all models
predict the fastest exit rate of cells in the absence of any obstacles.

Fig. 2. Experimental results and revised DGD model. We performed experi-
ments to test the accuracy of the predictions made by all models. (a) Design
patterns of a microfluidic device with different obstacle size. Other designs
tested include those with the same obstacle size but different coverage (See
SI Appendix, Fig. S1). (b) Total cell count of YFP-labeled, wild-type E. coli
RP437 cells in the microchambers as a function of time, after applying a M9CG
chemotaxis stimulus. Note the difference between the experimental results
and simulation results from Fig. 1. (c) Simulations using the revised DGD
model for the same settings. Changing the secretion model and adjusting
tumbling rates based on the environment the updated DGD model leads to
results that are concordant with the experimental results.

the theoretical models can explain the observed behavior. The
first is a change in the communication protocol that limits the
sending of messages (secreted signaling molecules). The second
modification was an adaptive change in the tumbling rate based
on the presence and coverage of obstacles. We tested the latter
prediction and found that higher obstacle density indeed leads to
adaptively lower tumbling rates over time.

Results
Analysis of existing chemotaxis models

We tested several existing models of bacterial chemotaxis by
examining their predicted exit time (time to reach the attractant
source) in several topologies with regularly spaced obstacles (Fig.
1a). These include the Keller-Segel model [11] and models based
on Brown & Berg [14,17], which focus on individual cell move-
ment in response to chemoattractant. Another model we tested
was a differential equations (DE)model by Shklarsh et al [12] that
divides the area around each cell into three different compart-
ments and allows for both physical and chemical communication
between cells, where depending on their distance, neighboring
cells either attract or repel each other (Methods). Finally, we

Fig. 3. Single cell trajectories under different obstacle coverages. Left
column (top 3 rows): Trajectories of cells when no obstacles are present.
Middle column (top 3 rows): Trajectories with 64% of the area covered by
square obstacles. Right column (top 3 rows): Trajectories with 64% of the
area covered by round obstacles. Note, the grid like trajectories of individual
cells are due to the obstacles. Bottom 3 rows: Additional trajectories without
(Left column) and with (Middle column (square), Right column (round))
obstacles, this time with the identified tumbles marked by black dots. As
discussed in the text and in Fig. 4, the analysis identifies more tumbles in the
‘no obstacle’ cells even though they are much less constrained than the 64%
group. The food source is located at the bottom left corner at (0,0).

considered a Distributed Gradient Descent (DGD) model that
allows for a continuous set of messages to be exchanged among
cells and for cells to combine their internal sensing (based on
the gradient they observe) with the messages received from other
cells to determine their next move [13]. Figure 1b-e depicts
simulation results for these models on environments containing
different numbers of regularly spaced obstacles of the same size
(see Supporting Movies). In these simulations, the area covered
by the obstacles ranges from 0% to 64%. As can be seen, all
models predicted that with 0% coverage (no obstacles) bacteria
would reach the attractant source faster than in the presence of
increasingly higher obstacle coverage.

Experimental results contradict model predictions
Given the simulation results, we next asked if these models

can indeed qualitatively describe the collective migration of E.
coli cells in complex environments. In addition to model valida-
tion, such experiments may provide new insights and can help
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Fig. 4. Distribution of tumbling frequency under different obstacle cov-
erages. (a,c) Distribution and average of tumbling frequency (tumbles per
second) for two different obstacle types: a) 0% (red) and 64% square
obstacles (blue), c) 0% (red) and 64% round (blue). A shift in the mode
to the left (lower) for the 64% case is evident, indicating that cells may
indeed be learning to reduce their rates. (b,d) Distribution and average of
tumbling frequency (tumbles per second) for cells in 64% (b) square, and
(d) round, obstacle covered environments at two different times: early (first
half of trajectory, green) and late times (second half, pink). Cells reduce their
average tumbling frequency over time, especially if these rates are high to
begin with (right hand side).

Fig. 5. Application of adaptive tumbling frequency method for swarm robot
search task. a) Terrain used in one of the NetLogo simulations. Grey shades
correspond to attractant distribution. Red squares are randomly placed
obstacles. See SI Appendix (Fig. S14) for parameters used in the simulations.
b) Distribution of search time in DPSO and Modified DPSO with constant and
varying tumbling frequency over 50 independent trials. denotes the average
search time in each setting.By adjusting tumbling frequency based on the
terrain the modified DSPO method improves search time.

further improve algorithms and analysis [18-19]. To this end,
we designed and fabricated a microfluidic device to test the
chemotaxis ofE. coli cells in terrains without and with obstacles of
different sizes and coverage (Fig. 2, SI Appendix (Methods, Fig.
S1)).

We first performed experiments in which we followed cells
in environments with 0%, 16%, 25%, 36%, 49% and 64% of
total area covered by obstacles of identical size (50 µm2) (Fig.
2a). We used either a complex medium (M9CG) (Fig. 2b), where
the attractant gradient was created by the bacteria depleting
the nutrients in the rectangle chamber while fresh nutrients
are supplied through one of the rectangle’s corners, or a single
attractant medium (200 µM aspartate [Asp] in M9-G), where
200 µM aspartate was supplied continuously through one of the
chamber’s corner. (SI Appendix, Fig. S2, S7). To determine the
impact of the various obstacle types on the time it takes E. coli

cells to reach the attractant source, we measured the change in
the fraction of cells remaining in the chamber as a function of
time. In contrast to predictions by all models (Fig. 1b-e), E. coli
cells displayed no substantial difference in their average exit times
between different overall coverages. In fact, regardless of the
overall surface coverage E. coli cells exited the microchambers
at nearly identical rates (Supporting Movie 1). We also tested
the migration of cells using microchambers containing different
obstacles’ shape (round instead of square) with the same surface
coverage as before and observed the same results, as well as
different obstacle sizes but constant total surface coverage (25%).
We determined that variation in obstacle size and shape does not
affect the bacteria’s chemotactic migration towards the attractant
source (SI Appendix (Figs. S4,6), Supporting Movie 2).

Revising the DGD model to fit experimental results
Given the disagreement between experimental and simula-

tion results we further considered the DGD model to determine
if any specific changes to it can result in better agreement with the
experimental data. We tested several different possible changes
(Methods) based on either previously impliedmolecular behavior
(for example, when do cells secrete the chemical attractant?) or
changes that affect parameters that are used by the model (for
example, tumbling frequency, message weight when integrating
information, etc.). For each of the changes we re-run the simu-
lations and compared their output to the experimental results.
We identified two key changes that help improve the match to
experimental results. The first affected the messages sent by each
cell (secreted signaling molecules). While prior models assume
that cells secrete such signaling molecules continuously, we found
that limiting the release of the attractant to only when a cell
observes an improvement in the chemo-attractant gradient leads
to better performance in the more complex environments. This
change in the model is supported in part by our recent study
where we observed that bacteria indeed secretes an attractant in
response to sensing an external attractant gradient [6].

The second and more surprising model change was related to
a reduction in tumbling frequency based on the environment the
cells occupy. We observed that reducing the tumbling frequency
based on the number of times a cell is unable to proceed in a
given direction due to obstacles in its path, leads to much faster
exit times in the higher coverage environments (see Methods
for mathematical and computational details, which are based on
feedback loops). With these changes, the simulation results of
the updated DGDmodel exhibited qualitatively good agreement
with the experimental results (Fig. 2c and SI Appendix (Fig. S4),
Supporting movies 3 and 4). We also tested the impact of these
changes on another prior model (Shklarshmodel). However, sim-
ulations based on the updated Shklarsh model till did not agree
with experimental results (SI Appendix, Fig. S8). Beyond the
differences in assumptions between the DGD and the Shklarsh
models (SI Appendix), the Shklarsh model assumes that cells can
only use the orientation of nearby agents to update their own
direction (introducing a cutoff to determine ‘nearby’). In contrast
the DGDmodel uses a continuous version of distance rather than
orientation which as we show leads to better agreement with the
experimental results.

Experimentally testing model predictions
The revised model leads to two predictions about the be-

havior of E. coli cells in complex environments. First, it predicts
that tumbling is reduced when the obstacle coverage increases.
Second, it predicts that such reduction is based on feedback, and
thus over time, we expect a reduction in tumbling in cases where
cells encounter an environment in which a large fraction of the
surface is covered by obstacles. The first prediction is intuitive.
When a cell encounters a barrier, it moves parallel to it, which
leads to a reduction in tumbling frequency [20]. However, the
second prediction is surprising and we are not aware of prior work
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describing it. Such change implies that bacteria may have a long
term adaptation mechanism.

To test these predictions we analyzed the movement of indi-
vidual cells in different environments by tracking their trajectories
(Methods). The tracking algorithm links a cell in a frame with the
closest cell in the next frame within a maximum distance, which
was set to 10 pixels (∼23 µm). Tracking was performed for three
different terrains: An environment with no obstacles (0% cover-
age), with 64% square obstacle coverage, and with 64% round
obstacle coverage. Fig. 3 displays a number of representative cell
trajectories for these environments. Given the trajectories of each
cell, we next analyzed their tumbling frequencies . We define a
`tumble' when the angular movement of a cell is above a certain
threshold (Methods). Since cells complete a tumble over a period
of time, we based the tumble calls onmultiple consecutive frames.
From the point of origin in the movie, or the end of the previous
tumble, we have computed cumulative angular movement in
the subsequent frames. When the cumulative angular movement
reaches the pre-defined threshold, we call it a tumble and up-
date the point of origin at the detected tumble location. This is
repeated until the tracking for the cell is completed (Methods).
Detected tumbles for these environments are shown in Fig. 3
(bottom three rows). As can be seen, while the 64% coverage
environments are more constrained, cells seem to perform fewer
tumbles. In contrast, even though they are not facing any specific
limit on their movement, in the unconstrained 0% environment
cells seem to tumble more. Fig. 4a,c quantifies these differences
and presents the tumbling frequency distributions for the 0% and
64% environments. Tumbling frequency is computed by dividing
the number of tumbles in each track by the duration of tracks in
seconds. Distribution is calculated using tumbling frequencies for
all the cell tracks. As can be seen, the average tumbling frequency
is lower in the 64% coverage setup by ∼30% when compared to
the 0% coverage, as predicted by the revised model. Similarly,
Fig. 4b,d compares the tumbling frequency for the earlier frames
in the 64% environment to those in the later frames/times. These
distributions are only based on cells that were present in both
the earlier and later subsets of frames. Again, as predicted by
the model we see a decrease (∼10%) in the tumbling frequency
over time indicating that cells can indeed adjust their tumbling
rates based on their environment. We observe similar tumbling
distribution plots from simulation of the revised DGD model (SI
Appendix, Figs. S10, S11).

We have also performed global analysis using mean square
displacement (MSD) to model tumbling in the single cell tracks.
MSD as a function of time exhibits 2 distinct regimes. In the
short time scale it exhibits a power-law behavior ( , with
power α=2, which reflects the ballistic nature of the motion at
that scale. In the long time scale the MSD exhibits a diffusive
behavior, where is proportional to t. The transition time
between these two regimes is thus the average lifetime of the
ballistic motion, i.e. it is the average time of a straight run or
the inverse of the tumbling frequency (see also Methods) [21].
The MSD analysis results (SI Appendix Fig. S12) and are in
good agreement with our previous findings. We find that is
larger in terrains with obstacles (i.e. lower tumbling), and that
in the presence of obstacles it increases with time indicating that
the tumbling frequency decreases in time. Note that this change
in or the tumbling frequency in time cannot be attributed to
the bacteria getting closer to the chemo-attractant source and
therefore sensing a stronger gradient, since such effect will be
observed in the microchambers without obstacles as well. The
inferred tumbling rate, every 3-5 seconds, is higher than what is
typically observed in homogenous environments. This relatively
longer run is likely the result of the use of a specific attractant,
aspartate, which was shown to lead to less frequent tumbling [36].

Discussion

Several studies have focused on organism and cell movement. For
example, in [22] the authors model ants’movement and in [23] the
authors model zooplanktons’movement response to light source.
Other studies have attempted to model movement of bacteria in
response to a chemical stimulus [24-26]. However, as we showed,
thesemodels cannot accurately predict bacterial behavior in com-
plex environments. Bacterial cells face many obstacles in their
natural environments. Whether trying to reach a nutrient source,
or host cell for pathogens, bacteria often have to navigate through
confounded terrains. E. coli, for example, naturally inhabits the
gastrointestinal tract, which is a complex environment and can
impose complicated topology with physical obstacles. Therefore,
it is likely that their behavior in such environments has evolved
to minimize the time to reach an attractant nutrient source (e.g.,
aspartate). To uncover likely mechanisms used by bacteria to
reduce search time in such complex environments we consid-
ered several possible changes to mathematical models of such
behavior that can lead to observed exit times of cells. We found
that in addition to limiting the secretion of cell-cell signaling to
times when the cell is moving up a gradient, a key change that
greatly improves exit times is reducing tumbling rates based on
the number of times the cells encounter a physical obstacle. In
other words, cells seem to “learn” (form short term memory of)
the complexity of the environments they are in and adjust their
tumbling rates accordingly. While the control of such “learning”
mechanism is not known, adaptation to the environment is very
common in bacteria. For example, bacteria adapt their sensing
ability to their surroundings as they move up an attractant (or
down a repellent) gradient, such that they are always able to sense
a relative improvement in the conditions [27]. Reduction in tum-
bling frequency may be controlled through the cell’s mechano-
sensing apparatus, whose effects has been reported, but its control
mechanism is yet to be discovered [28-29].

Applying the changes mentioned above, leads to models
that mimic observed behavior under a wide range of obstacle
coverages. While we still observe some differences between ex-
periments and simulations, these are likely the result of cells
that get stuck to the plate, or due to changes in the external
gradient over time. While most cells manage to escape before
there is a significant change in the gradient, at some point the
microchamber becomes saturated with the external signal pre-
venting remaining cells from escaping (for more details of the
gradient change over time see [6]). However, this difference does
not impact the conclusions of our modeling and experimental
results which indicate that the decrease in tumbling rate is the
likely reason for the faster than expected) exit of most cells.

To test if the model predictions indeed reflect bacterial be-
havior we have tracked single cells in settings with and without
obstacles. These experiments revealed that when faced with ter-
rains that are covered by a large number of obstacles (64% total
surface coverage) cells indeed reduce their overall tumbling rates
when compared to those observed without any obstacles (0%
coverage). Further, we have shown that this behavior is indeed
adaptive. Even for the 64% coverage case we observe a reduction
of tumbling rates over time with higher initial tumbling, which
is reduced as the cells encounter more and more obstacles. We
note, however, that in our analysis, we do not distinguish between
tumbling due to intracellular mechanisms or due to the physical
environment. This is because both would have the same effect on
the overall motion of the bacteria. However, the fact that there is
a change in the tumbling frequency over time in the same terrain
indicates that the intracellular control mechanism is influenced
by the physical environment, which does not change over time.
As for the setup, we are only considering bacteria movement
in liquid media where passages between obstacles are at least
one order of magnitude larger than the bacteria themselves. In
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much smaller passages, such as in semisolid agar, the bacteria
behavior may be different. Future studies are also required to
identify the molecular mechanism by which E.coli cells control
such adjustments in their tumbling rates.

An interesting question that this study raises is how the
migration of bacteria away from repellents would be influenced
by physical obstacles. The consensus in the field is that the
bacterial migration away from repellents is driven by the same
mechanism as its migration towards attractants. However, an
important distinction should be made here. Our results, as well as
previous studies [6] point to a cell-cell communicationmechanism
in which secretion of the attractant is triggered by the sensing
of the external signal. This might be similar when bacteria are
moving down a repellent gradient if the secretion is triggered by
any improvement in the environment. However, if it is triggered
by the sensing of a specific chemical, then one would expect
that the migration of bacteria down a repellent gradient will
differ significantly from the pattern observed here. This question
remains open for future studies.

Reasoning under uncertainty, in which a collection of agents
needs to reach a common goal while each has access to limited
information is also of major interest in the Artificial Intelligence
(AI) community. Current algorithms for this problem utilize
robotics swarms that often operate in noisy and complex envi-
ronments [15]. However, most AI algorithms for this task do not
allow feedback from the environment or topology to adjust the
hyper-parameters used in the algorithm. To test whether the idea
of reduced tumbling in complex environments can improve swarm
based searches we used a simulation environment implemented
by NetLogo [33] (Methods). A recent benchmark paper [35] iden-
tified the Darwinian Particle Swarm Optimization (DPSO) [34]
as the most efficient current method in avoiding local minima in
these distributed search tasks.We compared three possible search
methods: No tumbling, fixed tumbling, and adaptive tumbling
similar to the behavior observed for bacterial cells. As can be
seen, we observe an improvement (reduction in search times)
when using adaptive tumbling in noisy environments (Figure 5).
These results show, that adopting insights based on bacterial
coordination can suggest new directions to improve the perfor-
mance of these algorithms. More generally, our results provide
additional support to the usefulness of studies that attempt to
determine what and how biological processes compute, and in
turn use the results to improve computational methods [18-19].

Methods
Bacterial strains and growth conditions

The wild-type E. coli K12 strain RP437 that constitutively express yellow
fluorescent protein (YFP) from the plasmid PZA3R-YFP or mCherry from
the plasmid PZA3R-mCherry, both of which containing chloramphenicol
resistance, were used. Strains were first grown overnight at 30°C with
strong agitation (240 rpm) in M9 minimal medium supplemented with
1g/L casamino acids and 4g/L glucose (M9CG) and appropriate antibiotics.
Cultures were then diluted 100 fold in fresh M9CG and grown at 30°C
until early exponential phase, optical density at 600nm (OD600) of 0.1-0.2.
Prior to loading the bacteria the cultures were centrifuged, washed, and
resuspended in fresh testing medium. Testing media used were either M9CG
or M9G (M9 minimal medium supplemented with 4g/L glucose and 500 g/mL
each of L-threonine, L-leucine, L-histidine, L-methionine, and thiamine).

Microfluidic device
The design and fabrication of the microfluidic devices used were as

described before [6]. Briefly, the microfluidic device (Fig. 2a and SI Appendix,
Fig. S1) contains eleven consecutive microchambers that are connected to a
wide channel through a 5µm-wide and 40 µm-long inlet channel that allow
the introduction of E. coli cells and media into the microchambers. Excluding
their nook area, the microchambers are 10 µm high, 1 mm wide and 1 mm
long and contained evenly distributed square obstacles. The microdevice
was fabricated by standard soft lithography. See SI Appendix for details.

Time-lapse imaging
Migration of YFP-expressing E. coli cells were recorded in fluorescence

mode using a fully automated inverted microscope (Zeiss AxioObserver Z1),
equipped with a motorized x-y stage (Applied Scientific Instruments). Time-
lapse movies were acquired at a rate of 2 frames/min in population level
experiments and 3/10 (square / round obstacles) frames/second in single cell

tracking experiments using a CCD camera (Zeiss AxioCam MRm) at room
temperature (26°C). Movies were analyzed using the ImageJ software. The
cells inside the microchambers in each image were counted automatically
using Cellprofiler [30]. Analysis of the movement of individual cells was
performed with Trackmate, a Fiji plugin for single particle-tracking [31]. See
SI Appendix for complete details.

DGD model for bacterial chemotaxis
We tested several prior models of bacterial chemotaxis including those

that focus on individual cells and those that consider communication be-
tween cells. These include the Keller-Segel model [11], the individual chemo-
tactic movement model based on Brown-Berg experiment [14, 17], the
Shklarsh model [12] and the DGD Model [13]. Details about these models
are in SI Appendix. We only discuss here the DGD model since it is the model
we extended to account for adjusted tumbling rates.

In the DGD model the movement of an agent at time n is a function
of two quantities: its own sense of direction (based on the

chemical gradient), and the locations and movement directions of other
migrating cells. In this dynamic interaction network of migrating bacteria,
nodes correspond to bacteria, at some current location and edges,
representing physical distance, exist between every pair of cells. The DGD
model updates based on individual belief and the beliefs of neighbors,
while using simple messages (formalized below).

The model assumes that individual cells follow a chemical gradient of
food source by decreasing their (random) tumbling angle at high concen-
trations and thus largely move in the direction of the attractant. Specifi-
cally, bacteria perpetually move in a direction that they repeatedly perturb
randomly. The magnitudes of these perturbations are inversely related
to the change in the attractant concentration between iterations, with
the approximate effect that the agent/cell continues to move in gradient
direction. Formally, under these assumptions, at time n, cell i changes its
direction by an angle , which is a function of , the difference in
food concentration between the current and previous time steps. Specifically,
the new tumbling angle is sampled randomly from a Gaussian distri-

bution centered at the previous angle

with the variance given as:

Thus, based only on its own perception of the food gradient, the agent
updates its location according to

where is the unit vector in the direction of the movement.

The above equation is based on individual sensing only. We denote by
the aggregate of all secreted chemicals by neighboring cells (see SI Appendix
for details). At each step is updated, as follows:

DL,T is a discrete thresholding operator parameterized by L, a positive integer
denoting the number of possible messages, and T, an upper bound above
which all messages are treated as the highest value possible (see [32] for
the exact construction of this “stone-age computing" threshold, which has
been used in ant migration models). Ca is a positive diffusion constant,
determining how quickly the location signal diffuse from the source agent.
Under this model, bacteria communicate the attraction information using
only log2 L bits. The model also includes a physical repulsion term. If an agent
physically interacts with another agent it moves in the opposite direction to
where it came from regardless of the other information it has. Hence the
direction will be updated, as follows:

Where RR is an influence radius that is related to the physical size of the
agents and their speed such that agents cannot reach agents outside of RR
in a single round [12]. Finally, the agent combines the messages it received
with its own observation resulting in the following modification of
equation (2):

w is a scalar constant. A schematic layout of the original DGD model is
presented in the SI Appendix, Fig. S9a.
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Revising the DGD model to fit experimental observations
Chemotaxis models [12,13] assume that the cells communicate via chem-

ical secretion at all points of their search, irrespective of their individual
sensing of the attractant gradient. However, recent observations suggest
that this may not be the case. Instead, cells only signal (via secretion of
amplifying signaling molecule(s)) when they are moving in the right direction
(i.e., positive gradient change) [6]. We have thus revised the model so that
only messages from cells with positive gradient change are allowed. Denote
by the gradient change perceived by cell i.

We update eq 4, as follows:

The revised model also allows cells to adjust their tumbling frequency
according to their perception of the environment. We assume that cell
iteratively updates (via a feedback loop) its tumbling time, denoted , as
follows (note that is tumbling time in seconds, tumbling rate is ).

Here, is the number of times agent has encountered an obstacle
before iteration . is a constant.

This adaptive formulation of change throughout allows the cells to
adjust their movement in high obstacle coverage. When a cell encounters an
obstacle, we assume that it remains in its current location (velocity 0) and
then adjusts its direction to align with it until its next tumble.

Using the new rate we update eq 1 as following: change below accord-
ing to text above

Finally, we model variable cell sensing abilities (corresponding to difference
within cell populations) by adding an additional Gaussian noise term to

Here denotes specific sensing ability, which we assume varies between 0
and 1 (0 denotes the lowest sensing ability, i.e., cells cannot perceive the food

gradient at all). A schematic layout of the revised DGD model and sensitivity
analysis of its parameters is shown in SI Appendix (Fig. S9, Table S2).

Computing tumbling rates
To compute tumbling frequencies (TFs) we first define a ‘Tumble’ when

the angular movement of a cell reaches a certain threshold (80˚ in this paper,
results are robust to the selection of the threshold). Since cells complete a
tumble over a period of time, we analyze multiple consecutive frames (frame
rate: 10/3 frames per second) to detect a complete tumble (Formal algorithm
is given in SI Appendix, Table S1). We take an iterative approach to count
the total number of tumbles in a single cell track. From a point of origin
in the track we compute cumulative angular movement in the subsequent
points. When the cumulative angular movement is above a certain threshold,
we define it as a tumble and update the point of origin at the detected
tumble location. We again compute cumulative angular movements until
the cell exits or the movie ends. Due to noisy measurement we sometimes
observe multiple large angular movements in a very short time span that do
not represent actual tumbles and falsely increase the total tumble counts. To
avoid that, for each detected tumble we investigate whether a tumble was
detected in previous Nc (where we set Nc =3 here) consecutive frames. If we
observe multiple tumbles within Nc consecutive frames, we only consider the
tumble with the maximum angular displacement.

Robotic swarm algorithms:
To test whether the idea of reduced tumbling in complex environments

can help swarm based searches we used the NetLogo [33] simulation environ-
ment. In it, each robot is equipped with two sensors, one for sound / smell
(to identify victims (attractants)) and the other locally senses neighboring
agents or obstacles in the environment (visually, usually within a small fixed
range). The simulation setup is shown in Figure 5a. To test the performance
of different tumbling based methods in this environment we used DPSO
[34]. In DPSO, to simulate natural selection, many simultaneous, parallel PSO
algorithms are performed on a test problem. Similar to chemotaxis models,
the agents continuously adjust their movement direction based on the sound
/ smell gradient from the victim and their perception of the obstacles. Each
robot can also influence the movement direction of other members of the
swarm by sending messages about its current state. Robots then combine
these messages with their own perception of the environment to determine
the direction of their movement.
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