
Predicting Enhancer-Promoter Interaction from
Genomic Sequence with Deep Learning

Shashank Singh
Statistics & Machine Learning Departments

Carnegie Mellon University
sss1@andrew.cmu.edu

Yang Yang
Computational Biology Department

Carnegie Mellon University
yy3@andrew.cmu.edu

Barnabás Póczos
Machine Learning Department

Carnegie Mellon University
bapoczos@cs.cmu.edu

Jian Ma
Computational Biology Department

Carnegie Mellon University
jianma@cs.cmu.edu

1 Introduction
Our understanding of how the human genome regulates complex cellular functions in a living
organism is still primitive. One particular aspect that we know extremely little about is the high-order
organization of the human genome in the cell nucleus. The genome in each human cell contains
approximately 6 feet long DNA being tightly folded and packaged into a nucleus with 5µm diameter.
Intriguingly, this packaging is highly organized and tightly controlled [1]. For example, distal
regulatory enhancer elements in the genome can interact with proximal promoter regions to regulate
the target gene expression, and the mutations that change such interactions will cause the target gene
to be dysregulated [2–4]. However, the principles at the sequence level underlying such organization
and chromatin interaction are poorly understood.

In this work, we focus on enhancer-promoter interactions (EPI) of the genome. Although certain
sequence features (e.g., CTCF binding motifs [5]) are known to mediate chromatin loops, it remains
largely elusive whether and what information encoded in the genome sequence contains instructions
for forming EPI. In mammalian and vertebrate genomes, the promoter regions of the gene and their
distal regulatory enhancers may be millions of base-pairs away from each other; and a promoter may
not interact with its closest enhancer. There are prior works in predicting EPI based on epigenetic
features in enhancers and promoters as well as target gene expressions [6, 7]. However, no algorithm
exists to predict EPI using sequence-level signatures only. In the past year, there has been an
explosion of deep learning approaches to the related problem of genome annotation [8–13]. However,
no deep learning model currently exists to predict the high-order chromatin interactions of functional
sequences. The main contribution of this work is to provide a deep learning based architecture for
predicting EPI using sequence-based features only, which in turn demonstrates that the principles of
regulating EPI may be largely encoded in the genome sequences.

2 Methods
2.1 Model
Our model, named SPEID (Sequence-based Promoter-Enhancer Interaction with Deep learning), is
illustrated in Figure 1. The network consists of a pair of convolution/activation/max-pool layers, a
recurrent long short-term memory (LSTM) layer, and a dense layer.

The first layers of the network are responsible for learning informative subsequence features of the
inputs. Because informative subsequence features may differ between enhancers and promoters, we
train separate branches for each. These features might include, for example, transcription factor (TF)
protein binding motifs and other sequence-based signals. Characterizing these sequence features is
an important problem for future study; for now, we are simply using the deep network to learn them,



Figure 1: Diagram of our deep learning model SPEID.

supported by some prior knowledge of TF binding motifs. Specifically, as suggested by [11], we
inject some prior knowledge by initializing about half of the convolutional kernels with known motifs
from the JASPAR database [14]. Note that convolutional kernels are model parameters to be learned
from the data, and the model is free to retain, modify, or discard these initial values based on whether
they are useful for prediction.

Each branch consists of a convolution layer and a rectified linear unit (ReLU) activation layer,
which together extract subsequence features from the input, and a pooling layer, which reduces
dimensionality. Pooling is especially important in EPI prediction because of the long input sequence
(5kbp, as compared to 1kbp used when predicting sequence variant function [8, 11]). (Parameters:
Number of Kernels: 1024, Filter Length: 40, L2 penalty weight: 10−5, Pool Length: 20, Stride: 20)

Before feeding into the next layer, the enhancer and promoter branches are concatenated into a single
output. The remaining layers of the network act jointly on this concatenation, rather than as disjoint
pairs of layers, as in the previous layers.

The next layer is a recurrent long short-term memory (LSTM) layer, responsible for identifying
informative combinations of the extracted features, across the extent of the sequence. To do this
the LSTM sweeps across its input, choosing to remember or forget each feature. This layer is
bidirectional, in that it sweeps from both left to right and right to left; the outputs of each direction
are concatenated before feeding into the next layer. (Parameters: Output dimension: 100 left-to-right
and 100 right-to-left)

The final dense layer is simply an array of hidden units with nonlinear (ReLU) activations feeding
into a single sigmoid unit that predicts a class based on the output R. (Parameters: Number of units:
925, L2 penalty weight: 10−5)

Similar (albeit simpler) architectures have been used for the related problem of predicting function of
non-coding sequence variants [8, 11]. In fact, our use of a recurrent LSTM layer rather than a hierarchy
of convolutional/max-pooling layers is inspired by the architecture of DanQ [11]. However, our
method solves a fundamentally different problem – predicting interactions between sequences rather
than predicting annotations from a single sequence. Hence, our model has a branched architecture,
which takes two inputs and produces a single classification, rather than a sequential architecture.
Because the data for this problem are far sparser, we also require a more careful training procedure, as
detailed in the next section. There are also several finer distinctions between the models, such as our
use of batch normalization to accelerate training and weight regularization to improve generalization.

Other training parameters. To accelerate training, we performed batch normalization at 4 points in
the network: before and after the LSTM layer, between the dense layer and its ReLU activation, and
between the dense layer and the final sigmoid classifier. The model was trained in minibatches of
100 samples by back-propagation, using binary cross-entropy loss, minimized by Adam [15] with a
learning rate of 10−5. The initial training phase lasted 32 epochs and the retraining phase lasted 80
epochs, taking, for instance, 11 and 6 hours for K562, respectively, on an NVIDIA GTX 1080 GPU.

2



2.2 Training Procedure
Recall that our data set is highly imbalanced – there are many more negative (noninteracting) pairs
than positive (interacting) pairs. In each cell line, there are typically 20 times more negative samples
than positive samples. To combat the difficulty of learning highly imbalanced classes, we utilize a
two-stage training procedure that involves pre-training on a data set balanced with data augmentation,
followed by training on the original data.

2.2.1 Pre-training with Data Augmentation
Data augmentation is commonly used as an alternative to re-weighting data when training deep
learning models on highly imbalanced classes. For example, image data is often augmented with
random translations, scalings, and rotations of the original data. In our case, because enhancers and
promoters are typically smaller than the fixed window size we use as input, the labels are invariant to
small shifts of the input sequence, as long as the enhancer or promoter remains within this window.
By randomly shifting each positive promoter and enhancer within this window, we generated “new”
positive samples. We did this 20 times with each positive sample, effectively balancing the positive
and negative classes.

In addition to balancing class sizes, this data augmentation has the additional benefit of promoting
translation invariance in our model. This is desirable because informative subsequences of an input
enhancer or promoter need not consistently appear in the same position.

2.2.2 Imbalanced Training
Data augmentation results in a consistent training procedure for the network, allowing the con-
volutional layers to identify informative subsequence features and the recurrent layer to identify
long-range dependencies between these features. However, in typical applications of predicting
interactions, classes are, as in our original data, highly imbalanced. In these contexts, naively using
the network trained on augmented data results in a very high false positive rate.

Fortunately, this has relatively little to do with the convolutional and recurrent layers of the network,
which correctly learn features that distinguish positive and negative samples, and this issue is largely
due to the dense layer, which performs prediction based on these features. Hence, to correct for this,
we only to retrain the dense layer. We do this by “freezing” the lower layers of the network (i.e.,
setting the learning rate to 0), and then continuing to train the network as usual on the subset of the
original imbalanced data that was used to generate the augmented data.

2.2.3 Summary of Training Procedure
1. Begin with an imbalanced data set A.
2. Split the data uniformly into a large training set B and a small testing set C.
3. Augment positive samples in B to produce a balanced data set D.
4. Train the model extensively on D, using a small subset for validation.
5. Freeze the convolution and recurrent layers of the model.
6. Continue training the dense layer of the model on B.
7. Evaluate on C.

3 Results
3.1 Data
We utilized the EPI data sets previously used in TargetFinder [7] for our model training and evaluation.
The data include six cell lines (GM12878, HeLa-S3, HUVEC, IMR90, K562, and NHEK). Cell-
line specific active enhancers and promoters were identified using annotations from the ENCODE
Project [16] and Roadmap Epigenomics Project [17]. The data for each cell line consist of enhancer-
promoter pairs which are annotated as positive (interacting) or negative (non-interacting) using
high-resolution genome-wide measurements of chromatin contacts in each cell line based on Hi-C [5],
as described in [7]. 20 negative pairs were sampled per positive pair, under constraints on the
genomic distance between the paired enhancer and promoter as described in [7], such that positive
and negative pairs had similar enhancer-promoter distance distributions. The resultant datasets are
heavily imbalanced, in accordance with the fact that enhancer/promoter interactions are far fewer
than non-interactions.

3



To address the problem induced by the data imbalance, we applied data augmentation accordingly
to the positive pairs, which is described in detail in Section 2.2.1. The numbers of positive pairs,
augmented positive pairs, and negative pairs on each cell line are listed in Table 1. The original
annotated enhancers in the dataset of each cell line are mostly only a few hundred base pairs in length.
We extended the enhancers to 3kbp by including adjustable flanking regions for more informative
feature extraction with the use of the surrounding context. The enhancers are fitted to a uniform
length with the extensions, as sequences of fixed sizes are needed as input to the proposed model.
The original promoters are mostly 1-2 kbp in length, which are similarly fitted to a fixed window
size of 2kbp. We convert the genomic sequence to a 4× 3000 matrix (for enhancer) and 4× 2000
matrix (for promoter) as inputs to our model with a one-hot encoding (e.g., ‘A’ is (1, 0, 0, 0)T , ‘T’ is
(0, 1, 0, 0)T , etc.).

Cell Line Positive Pairs Augmented Positive Pairs Negative Pairs
GM12878 2,113 42,260 42,200
HeLa-S3 1,740 34,800 34,800
HUVEC 1,524 30,480 30,400
IMR90 1,254 25,080 25,000
K562 1,977 39,540 39,500

NHEK 1,291 25,820 25,600

Table 1: Positive sample, augmented positive sample, and negative sample counts, for each cell line.

3.2 Evaluation results as compared to TargetFinder

We compared our prediction results to a state-of-the-art model, TargetFinder [7], which uses boosted
trees to predict EPI based on a number of epigenetic feature annotations. TargetFinder has 3 variants,
which use features from different regions: Enhancer/Promoter (E/P) uses only annotations within the
enhancer and promoter, Extended Enhancer/Promoter (EE/P) additionally uses annotations within
an extended 3kbp flanking region around each enhancer, and Enhancer/Promoter/Window (E/P/W)
additionally uses annotations in the region between the enhancer and promoter.

Table 2 shows a comparison of results between our SPEID method and different TargetFinder models,
on each of 6 different cell types. Due to high class imbalance, we report F1 score (harmonic mean of
precision and recall), rather than accuracy. As described in Section 2.2.3, reported results are on a
held-out subset of 10% of the original data. We found that, although results vary across different cell
lines, the performance of our SPEID model can achieve comparable results with TargetFinder’s best
model. Taken together, our results suggest that sequence-based features have important information
that can determine EPI and our model can effectively predict EPI using sequence features only.

Cell Type
Model GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK
SPEID 0.85 0.81 0.75 0.78 0.85 0.94
TargetFinder (E/P) 0.59 0.61 0.48 0.48 0.61 0.83
TargetFinder (EE/P) 0.84 0.83 0.71 0.83 0.81 0.83
TargetFinder (E/P/W) 0.81 0.87 0.77 0.78 0.85 0.90

Table 2: F1 scores for different for different EPI prediction methods.

4 Conclusions and Future Work

The question we address in this work is: If we are given a pair of genomic sequences as putative
enhancer and promoter, can we predict whether they interact using sequence-based features only?
We have developed, to the best of our knowledge, the first deep learning model, SPEID, to tackle this
problem. Our results demonstrate that it is possible to obtain state-of-the-art prediction of EPI using
only sequence information, obtaining results comparable to those of TargetFinder, which utilizes
epigenetic signals and gene expression. We also show that deep learning can effectively extract
relevant sequence information. A natural next step is to improve our model to reveal specific sequence-
based determinants and also to characterize the most important sequence-based and epigenetic factors
combination in determining EPI.

4



Acknowledgments
This material is based upon work supported by a National Science Foundation Graduate Research
Fellowship to the first author under Grant No. DGE-1252522.

References
[1] Tom Sexton and Giacomo Cavalli. The role of chromosome domains in shaping the functional genome.

Cell, 160(6):1049–1059, 2015.

[2] Yubo Zhang, Chee-Hong Wong, Ramon Y Birnbaum, Guoliang Li, Rebecca Favaro, Chew Yee Ngan,
Joanne Lim, Eunice Tai, Huay Mei Poh, Eleanor Wong, et al. Chromatin connectivity maps reveal dynamic
promoter-enhancer long-range associations. Nature, 504(7479):306–310, 2013.

[3] Jesse R Dixon, Inkyung Jung, Siddarth Selvaraj, Yin Shen, Jessica E Antosiewicz-Bourget, Ah Young Lee,
Zhen Ye, Audrey Kim, Nisha Rajagopal, Wei Xie, et al. Chromatin architecture reorganization during stem
cell differentiation. Nature, 518(7539):331–336, 2015.

[4] Ya Guo, Quan Xu, Daniele Canzio, Jia Shou, Jinhuan Li, David U Gorkin, Inkyung Jung, Haiyang
Wu, Yanan Zhai, Yuanxiao Tang, et al. Crispr inversion of ctcf sites alters genome topology and en-
hancer/promoter function. Cell, 162(4):900–910, 2015.

[5] Suhas SP Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D Bochkov, James T
Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer, Eric S Lander, et al. A 3d map of the human
genome at kilobase resolution reveals principles of chromatin looping. Cell, 159(7):1665–1680, 2014.

[6] Sushmita Roy, Alireza Fotuhi Siahpirani, Deborah Chasman, Sara Knaack, Ferhat Ay, Ron Stewart, Michael
Wilson, and Rupa Sridharan. A predictive modeling approach for cell line-specific long-range regulatory
interactions. Nucleic acids research, 43(18):8694–8712, 2015.

[7] Sean Whalen, Rebecca M Truty, and Katherine S Pollard. Enhancer-promoter interactions are encoded by
complex genomic signatures on looping chromatin. Nature Genetics, 2016.

[8] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep learning-based
sequence model. Nature methods, 12(10):931–934, 2015.

[9] Yongjin Park and Manolis Kellis. Deep learning for regulatory genomics. Nature Biotechnology, 33(8):825–
826, 2015.

[10] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the sequence
specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology, 2015.

[11] Daniel Quang and Xiaohui Xie. Danq: a hybrid convolutional and recurrent deep neural network for
quantifying the function of dna sequences. bioRxiv, page 032821, 2015.

[12] Yifeng Li, Wenqiang Shi, and Wyeth W Wasserman. Genome-wide prediction of cis-regulatory regions
using supervised deep learning methods. bioRxiv, page 041616, 2016.

[13] David R Kelley, Jasper Snoek, and John L Rinn. Basset: Learning the regulatory code of the accessible
genome with deep convolutional neural networks. Genome research, 2016.

[14] Anthony Mathelier, Oriol Fornes, David J Arenillas, Chih-yu Chen, Grégoire Denay, Jessica Lee, Wenqiang
Shi, Casper Shyr, Ge Tan, Rebecca Worsley-Hunt, et al. Jaspar 2016: a major expansion and update of the
open-access database of transcription factor binding profiles. Nucleic acids research, page gkv1176, 2015.

[15] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[16] ENCODE Project Consortium et al. The encode (encyclopedia of dna elements) project. Science,
306(5696):636–640, 2004.

[17] Bradley E Bernstein, John A Stamatoyannopoulos, Joseph F Costello, Bing Ren, Aleksandar Milosavljevic,
Alexander Meissner, Manolis Kellis, Marco A Marra, Arthur L Beaudet, Joseph R Ecker, et al. The nih
roadmap epigenomics mapping consortium. Nature biotechnology, 28(10):1045–1048, 2010.

5


	Introduction
	Methods
	Model
	Training Procedure
	Pre-training with Data Augmentation
	Imbalanced Training
	Summary of Training Procedure


	Results
	Data
	Evaluation results as compared to TargetFinder

	Conclusions and Future Work

