
Distributed Gradient Descent in Bacterial Food Search

Shashank Singh∗1, Sabrina Rashid∗2, Saket Navlakha3, Ziv Bar-Joseph4†

1 Machine Learning Department and Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213.
2 Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213.

3 The Salk Institute for Biological Studies, Center for Integrative Biology, La Jolla, CA 92037.
4 Machine Learning Department and Computational Biology Department, Carnegie Mellon University,

Pittsburgh, PA 15213.
∗ These authors contributed equally.

† Contact author. Email: zivbj@cs.cmu.edu

Abstract. Communication and coordination play a major role in the ability of bacterial cells to
adapt to ever changing environments and conditions. Recent work has shown that such coordination
underlies several aspects of bacterial responses including their ability to develop antibiotic resistance.
Here we develop a new distributed gradient descent method that helps explain how bacterial cells
collectively search for food in harsh environments using extremely limited communication and com-
putational complexity. This method can also be used for computational tasks when agents are facing
similarly restricted conditions. We formalize the communication and computation assumptions re-
quired for successful coordination and prove that the method we propose leads to convergence even
when using a dynamically changing interaction network. The proposed method improves upon prior
models suggested for bacterial foraging despite making fewer assumptions. Simulation studies and
analysis of experimental data illustrate the ability of the method to explain and further predict several
aspects of bacterial swarm food search.

Supporting movies: https://www.andrew.cmu.edu/user/sabrinar/Bacteria_Simulation_Movies/
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1 Introduction

There are many parallel requirements of computational and biological systems, suggesting that
each can learn from the other. Like virtually all large-scale computing platforms, biological sys-
tems are mostly distributed consisting of molecules, cells, or organisms that interact, coordinate,
and reach decisions without central control [1], [2]. However, unlike most computational meth-
ods, biological systems rely on very limited communication protocols, do not assume that the
identity of the communicating agents is known and only utilize simple computations [3]. This
makes biological systems more robust to interference and environmental noise, and allows them
to function efficiently in harsh settings, a property that is desirable in computational systems
as well (for example, sensor networks in remote locations or robot swarms in mines [4]). Recent
work demonstrated that for certain network based distributed algorithms, our improved ability
to study biological processes at the molecular and cellular levels allows us to both improve our
understanding of these biological processes as well as suggest novel ways to improve distributed
computational algorithms [5].

For example, a number of key machine learning optimization algorithms, including neural
networks and non-negative matrix factorization, have been inspired by information processing
in the brain [6], [7]. Here we show that a variant of a very commonly used machine learning
coordination algorithm, distributed gradient descent (DGD), is also used by large bacterial swarms
to effectively search for food. Similar to the regular gradient descent setting [8], [9], by sensing
the food gradient, each cell has its own belief about the location of the food source (Figure
1a). However, given potential obstacles in the environment the bacteria operate in, as well as
limits on the ability of each cell to accurately detect and move toward the food source in a noisy
environment, the individual trajectories may not produce the optimal path to the food source.
Thus, in addition to using their own belief each cell also sends and receives messages from other
cells (either by secreting specific proteins or by physical interaction; Figure 1(b)), which it then
integrates to update its own belief and determine its next movement direction and velocity. The
process continues until the swarm converges to the food source.

While it is possible to see (both in experiments and in simulations below) that the group
based approach improves upon the time it takes a single cell to reach the food source, and several
aspects of the molecular pathways involved in the communication between bacterial cells have
been studied [10], the computations that the cells perform have not been been well characterized.
Current models [11],[12] are largely based on differential equation methods. While these can
indeed lead to fast coordinated search, they do not fully take into account the dynamically
changing topology of cells’ interaction network over time. Furthermore, they make unrealistically
strong assumptions about the abilities of cells to identify the source(s) of the messages and to
utilize a large (effectively continuous valued) set of messages, which is unrealistic given the limited
computational powers bacteria cells possess.

Here, we show that a distributed gradient descent model that makes biologically realistic
assumptions regarding the dynamics of the agents, the size of the set of the messages, and their
ability to identify senders, can solve the bacterial food search problem more efficiently (in terms of
the overall complexity of messages sent) and more quickly (in terms of the time it takes the swarm
to reach the food source) when compared to current differential equation models. We argue that
our model is in fact a distributed pseudogradient descent method, 1 and hence we can adapt proof
by [13] to show that our model converges to a local minimum, under reasonable assumptions on

1 pseudogradient here refers to the fact that each agent’s expected direction of movement at each time step is a
descent direction, even though it may not be a descent direction in actuality due to stochasticity.
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how bacteria communicate. Simulation studies indicate that the solution is feasible and leads to
improvements over prior methods and over single cell and single swarm behavior. These efficient
and robust bacterial algorithms are thus suitable to distributed sensors or wireless networks that
operate under strict communication and computation constraints [2], [14].

2 Methods

2.1 A computational framework for understanding bacterial food search

While bacterial food search has been extensively studied, at both molecular and cellular levels,
most studies have focused on the individual cell, rather than characterizing the collective per-
formance of a bacterial swarm. To formally analyze this process and to derive methods that can
also be used for other tasks by collections of severely restricted agents, we cast collective bacte-
rial food search as a distributed gradient descent (DGD) algorithm for determining the direction
of movement for each agent. DGD is a classic distributed optimization algorithm for finding a
minimum of an objective function. In our case, the minimum corresponds to the food source, and
the objective function incorporates the terrain over which the bacteria search. DGD is based on
message passing between nodes (individual cells or agents) in a graph. These messages contain
information that each node uses to update its own movement direction and velocity. The goal of
DGD is for all nodes to converge to a single location in the search space.

While DGD has been extensively studied in several different application areas, there are
several differences between standard DGD algorithms [15,16] and bacteria food search. First,
classical algorithms assume that message passing occurs on a fixed and static network, whereas
for bacteria, the edges and their weights are based on a sphere of influence which changes over time
based on each bacterium’s current location. Second, classical algorithms typically do not limit
message complexity (in terms of message size and number of messages sent), whereas bacteria
have a limited message vocabulary [3] and may attempt to minimize the number of messages sent
to reduce energy consumption. Third, classical algorithms require significant data aggregation at
individual nodes, whereas bacteria are not believed to collect and store data in such a manner.
Considering that bacteria have been solving this optimization problem under these constraints
for millions of years, we may be able to learn interesting algorithmic strategies from studying this
process. Such algorithms may address a new class of problems that may be important in other
applications, such as swarm robotics [18].

For bacteria, the movement of an agent i at time n is a function di(n) of two quantities: its
own sense of direction θi(n) (based on the chemical gradient), and the locations and movement
directions of other cells in the swarm. Nodes in this graph correspond to bacteria, at some current
location xi(n), and edges, weighted by representing physical distance, exist between two bacteria
that lie within a sphere of influence of each other. The challenge lies in updating di(n) based on
individual belief and the beliefs of neighbors, while using simple messaging (formalized below).
For bacteria, messages passed along edges in the graph contains both homophilic components
(attraction and orientation) and a heterophilic component (repulsion). Below, we first present
prior work by Shklarsh et al. [12] that describes bacteria food search using a differential equation
(DE) model and then present our DGD model, which improves upon the Shklarsh DE model in
performance while relying on weaker, more biologically realistic, assumptions.

2.2 The Shklarsh model: Cell based differential equation computation

Initial models for bacterial swarm movements assume that cells solve a system of differential
equations (DE) to determine their next move [12]. We briefly review this model below. The
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model assumes that individual cells follow a chemical gradient of food source by decreasing their
(random) tumble frequency in high concentration and thus largely move in the direction of the
food. Specifically, the bacteria perpetually moves in a direction which it repeatedly perturbs
randomly. The frequency and magnitude of these perturbations are inversely related to the change
in the food concentration between iterations, with the rough effect that the agent continues
to move in directions along the gradient. Formally, under these assumptions, at time n, the
bacterium changes its direction by an angle θ(n), which is a function of ∆c(n), the difference in
food concentration between the current and previous time steps. Specifically, the new tumbling
angle θ(n) is sampled randomly from a Gaussian distribution θ(n) ∼ N(θ(n − ∆n), σ(∆c(n))2)
centered at the previous angle θ(n−∆n), with the variance σ(∆c(n))2 given as:

σ(∆c(n))2 =

{
0; ∆c(n) ≥ 0
π; ∆c(n) < 0

. (1)

Thus, based only on its own perception of the food gradient, the ith agent updates its location
xi(n) according to

xi(n+∆n) = xi(n) + vi(n) ·∆n, (2)

where vi(n) is the unit vector in the direction of the movement.

vi(n) = (cos(θ(n)), sin(θ(n))). (3)

So far we have discussed movements based on sensing by individual cells (agents). However,
in almost all cases, cells move in large swarms. Communication among swarm members, and
between swarms, improves the ability of individual cells to handle obstacles in the direction of
the food source leading to faster and more efficient ways to reach the food. The communication
among agents is divided into three components: (1) repulsion from very close agents to avoid
collisions; (2) orientation to match the directions of neighboring cells, and (3) attraction to to
distant agents to keep the swarm unified (Figure 1(b)). The model of Shklarsh et al. assumes
that cells align their trajectory with the direction of the other cells if they are close enough, while
being attracted toward cells that are relatively far away.

Denote by ui(n) the vector agent i computes using the messages from the other cells (in this
model, movements are of fixed length and so the only variable in each iteration is the direction).
Then, if any other agents j are within the physical interaction (repulsion) range RR as shown in
Figure 1(b), the Shklarsh model sets:

ui(n) = −
∑

j∈BRR

xi(n)− xj(n)

‖xi(n)− xj(n)‖
. (4)

Otherwise, the Shklarsh model sets:

ui(n) =
∑

j∈BRO

vj(n) +
∑

j∈BRA,j /∈BRO

xi(n)− xj(n)

‖xi(n)− xj(n)‖
, (5)

where the first sum is over all agents j in the orientation range RO and the second sum is over
all agents in the attraction range RA (but not in the range RO). Next, the agent combines the
messages it received with its own observation, resulting in the following modification of equation
(2):

xi(n+∆n) = xi(n) +

(
ui(n)

‖ui(n)‖
+ wvi(n)

)
·∆n, (6)

where w is a scalar weighting factor.
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Fig. 1. (a): Terrain model for bacterial food search. Obstacles are randomly placed and the food
source is at the center of the region. Contours display the diffusion of the food source gradient.
(b): Dynamics of repulsion, orientation, and attraction for a single bacterial cell in the Shklarsh et
al. model. RR = radius of repulsion, RO = radius of orientation, and RA = radius of attraction.
While we still maintain the physical (RR) versus communication (RO, RA) split between the
repulsion and attraction / orientation information, our model does not assume that the identity
of the sender is known and so it does not distinguish cells in the RO and RA locations.

2.3 A distributed gradient descent model

While the model presented by Shklarsh et al. [12] captures the basics of bacterial swarm move-
ments, it suffers from several problems which make it unrealistic and, as we show in the Results
section, less efficient. First, the model assumes that cells can determine their exact distances from
each other cell (as can be seen by the summations over neighbors cells in the orientation and at-
traction ranges). This implicitly assumes that cells can identify individual senders, which is very
unlikely due to the large and dynamic nature of bacterial swarms. In addition, the model assumes
that cells can interpret complex (real-valued) messages in the forms of other cells locations and
orientations, which is again unrealistic [3]. Finally, the model assumes that, within each of the
ranges above, each cell exerts the same influence regardless of their distance from the receiving
cell, which is again unrealistic due to the nature of the communication channel (diffusion of a
secreted protein). We have thus modeled bacteria food search using a DGD model that relaxes
many of these assumptions while still allowing cells to (provably) reach an agreement regarding
the direction of movement and eventually the location of the food source, as observed in nature.

Our model still distinguishes between physical interactions (leading to repulsion) and messages
(secreted proteins). The former is handled by summing up the number of cells that are in physical
proximity without relying on their exact location. However, we make several changes to Equation
(5). First, we remove the requirement that cells can identify the distance and direction to each
other cell (and thus determine whether to use the attraction or orientation terms). Instead, we
simply sum over all cells, taking into account their relative influences under the assumption that
message strength decays exponentially with distance [19]. Second, we discretize the messages that
cells receive, resulting in simple messages with finitely many possible values. The changes lead to
the following modification of equation (5):

ui(n) = DL,T

(∑
j

exp(−(Co‖xi(n)− xj(n))‖)vj(n) +
∑
j

exp(−(Ca‖xi(n)− xj(n))‖)(xi(n)− xj(n))

‖xi(n)− xj(n)‖

)
. (7)

Here, DL,T is a discrete thresholding operator parametrized by L, a positive integer denoting the
number of possible messages, and T , an upper bound above which all messages as treated as the
highest value possible (see [20] for the exact construction of this “stone-age computing” threshold
which has been used in ant models). Ca and Co are positive diffusion constants, determining how
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quickly the attraction and orientation signals diffuse from the source agent. Typically, Co > Ca,
in which case nearby agents are influenced more by the orientation component and faraway
agents are influenced more by the attraction component Under this model, bacteria communicate
orientation and attraction information using only 3 + log2 L bits to communicate (log2 8 bits for
direction and log2 L bits for magnitude). In addition, we also add a Gaussian noise component
with a small variance σ to make this process stochastic. Note that the individual component of
the agents’ movement (based on the chemical gradient they perceive) is identical to that of the
Shklarsh model, and that we are modifying only the communication model. See appendix for the
complete combined model.

3 Convergence theorem

Unlike standard distributed gradient descent algorithms, the model described above does not rely
on a fixed network. Instead, in each iteration, the topology of the network (and thus the weights
placed on neighbors) changes with their movement. To prove that using such network (and the
computation we assume) indeed leads to convergence of the swarm as seen in nature (regardless
of agents’ starting locations), we adapt a convergence theorem for distributed pseudogradient
descent from [13]. The convergence proof below is only focused on the attraction component of
the model (see Discussion). Note that this theorem holds for both synchronous and asynchronous
message passing, so that the model could be generalized to the case where agents’ messages
themselves travel stochastically.

Convergence Theorem: Let xi(n) ∈ R2 denote the position of the ith agent at time n and
let J : R2 → R denotes the concentration of the food source (the objective function). Under
assumptions A1-A6 (see Appendix), the following hold:

1. There exists a constant γ∗ > 0 such that, if each step size is at most γ∗ (i.e., supi,n γi(n) ≤ γ∗),
then, with probability 1, for all distinct agents i and j,

lim
n→∞

(xi(n)− xj(n)) = 0.

2. If, in addition, the level sets of J are compact, then, with probability 1, for all agents i,

lim
n→∞

‖∇xJ(xi(n))‖2 = 0.

3. Finally, if, in addition, all stationary points of J are minima (e.g., if J is convex), then, with
probability 1, for all agents i,

lim
n→∞

J(xi(n)) = inf
x
J(x).

The three components of the above theorem gives sufficient conditions for the agents to con-
verge spatially, to converge to a (connected set of) stationary points, and to converge to a (con-
nected set of minima), respectively. Assumptions A1-A4 (stated precisely in the Appendix) are
that J is sufficiently smooth (its gradient is Lipschitz continuous) and that the agents’ commu-
nication network is sufficiently dense so that information from any agent eventually propagates
through the swarm. Assumptions A5 and A6 correspond to Lemmas 1 and 2 which we explicitly
discuss below.

In the case of distributed pseudogradient descent, the main idea of the proof is that there
exists a sequence {y(n)}∞n=1 such that, if, at time n, all agents were to cease to follow the gradient
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while continuing to move according to the attraction term (i.e., weighted averaging), then all
agents would converge to y(n). For example, in the case that all agents communicate with equal
weights, y(n) is simply the mean of the agents’ positions at time n. Under reasonable assumptions
on the edge weights, information from each agent is likely to propagate throughout the swarm and
so the agents will converge on y(n) (plus individual noise), regardless of their starting position.
Furthermore, once the agents are sufficiently close, the change in y(n) (which is a weighted average
of the gradients perceived by each agent) in each iteration becomes approximately proportional
to J(y(n)), so that the swarm collectively behaves as a traditional gradient descent. The formal
proofs rely on martingale convergence results and can be found in [13].

Two lemmas are needed to establish that our algorithm is indeed a distributed pseudogradient
algorithm before we can apply the results of [13]. The lemmas essentially state that (a) the
agents expect to move in a descent direction and (b) the variance in the agent’s movements is at
most proportional to the magnitude of the true gradient (so that, for example, it vanishes near
stationary points and hence agents cease to explore once they have located an optima).

Lemma 1: The expected gradient sensed by each agent, conditioned on the history of the
algorithm, is in a descent direction. That is, if {Fn}∞n=1 is the filtration underlying the sequence
of agents’ movements, then, for all times n and agents i,

E
[
∇xJ(xi(n)) · si(n)

∣∣Fn] ≤ 0. (8)

Lemma 2: The variance in the gradient sensed by each agent is at most proportional to the
true gradient at that agent’s location. That is, there exists K0 > 0 such that,

E
[
‖si(n)‖22

∣∣Fn] ≤ −K0E
[
∇xJ(xi(n)) · si(n)

∣∣Fn] . (9)

for all times n and agents i, Here, si(n) denotes the gradient perceived by the agent (i.e., the
agents movement due to tumbling but not due to communication). The proof of Lemma 1 is
based on the fact that agents continue moving in the correct descent direction once they have
detected an increase in food gradient in one of their tumbles (until that direction ceases to be a
descent direction). As we show, to achieve the expected decrease required in the lemma for each
step, we need to change either the tumbling distribution assumed in the original model, or the
number of tumbles per step (i.e. prior to communicating a new location). While the former (a
uniform tumbling distribution) is less likely in practice, the latter (communicating only when a
new descent direction is established) both makes biological sense [21] and, as we show empirically
in the Results section, reduces the time it takes the swarm to reach the food source. To prove the
second lemma we again need to modify the original algorithm somewhat, so that the step size
(amount of progress made in the direction computed) is proportional to the detected gradient,
causing the agents to slow as the approach the food source. This may be implemented in practice
via a feedback loop used by bacterial cells [22]. Detailed assumptions and rigorous proofs of both
lemmas and the convergence theorem are given in the Appendix.

4 Empirical Results

To determine whether the restricted communication model we assume can indeed lead to effi-
cient convergence we performed several simulations of bacterial food search. First, we compare
the search efficiency of bacteria food search with and without communication, and between our
model and the Shklarsh et al. model. Second, we introduce multiple swarms and test how their
trajectories affect each other. Third, we evaluate our method using real experimental data. Fi-
nally, we explore the predictions of the model for a setting in which a fraction of the bacteria are
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Fig. 2. Comparison between the original Shklarsh model and the DGD model. µ denotes the
mean number of iterations per agent, plus or minus the standard deviation.

behaving differently than the others. This latter point is of great current interest since ‘cheaters’
(cells that receive messages, but do not spend the energy on sending them) may be responsible for
a form of antibiotic resistance that has been recently observed [23]. Thus, the results presented
below are of interest to both the computational part of this work (efficient and robust DGD
model) and the biological aspects (models of bacterial coordination).

To save space, in the remainder of this section we refer to the Shklarsh et al. model as the
‘DE’ model and our model as the ‘DGD’ model (even though both rely on updating magnitude
and direction in time steps).

Performance on a realistic food search simulation

To evaluate the performance of our method we first tested it using the terrain and obstacle model
from Shklarsh et al. [12] (see Appendix). In this settings we varied the number of agents, the
communication between agents and the number of swarms.

The quantity we compared across all these comparisons was the time it took cells to reach
the food source (in terms of steps, since both algorithms can be run synchronously). Figure 2
presents the distribution of the number of steps it takes cells to reach the food source under several
different models. The first is a model without communication (i.e. each cell can only sense the
food gradient, but does not receive or send any message). The second is the Shklarsh et al. model
with adaptive weighting, and the other two models are our DGD model with fixed or variable step
size (the latter is required for convergence proof above while the former is usually used in bacterial
models). As can be seen, communication greatly improves the time it takes these cells to reach the
food source, which may explain why such a secretion based communication system has evolved in
these cells. As for the specific communication model, the DGD model improves the results when
compared to the DE model, even though our DGD model severely restricts the set of messages
that are used. In fact, the discretization of messages decreases both the mean and variance of
the distribution. This is likely due to the fact that, by thresholding, the discretization step is
effectively reducing noise, which can be rather large for each individual message. In addition, the
distance-weighted edges (corresponding to the diffusion rates of secreted communication proteins)
also improve the performance of the method. Simulation movies of the with communication and
without communication setting can be observed here.
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Figure 3 displays the effect on the time it takes cells to reach the food source if another swarm
is added to the simulation. In this sequential set up, the second swarm starts 50 iterations after
the first swarm (see movie). As can be seen, the fact that the first swarm was already able to
successfully navigate to the food source enables the second swarm to utilize (at least partially) the
trajectory they identified to further reduce the time it takes to reach the food. Interestingly, while
the improvement for the second swarm is indeed large, we also see a decrease in the performance
of the first swarm compared to the single swarm result presented in Figure 2. This is due to the
negative influence that the second swarm has on the first when it enters the region of influence.
Since the second swarm starts in the opposite direction of the food source, the first swarm is
(partially) adjusting its direction in the wrong way (based on attraction to cells in the second
swarm) which increases the number of iterations it takes cells to reach the food source.

Fig. 3. Distribution of number of iterations for two sequential swarms using variable step sizes.
µ denotes the mean number of iterations per agent.

Model evaluation and comparison using real data

To further test our model and compare it with the Shklarsh et al. model we used experimental
data from Taylor and Welch [24]. In their experiments, Taylor and Welch focus on the effects
of mobility on swarm performance when a food gradient exists. Note that immobility of a large
fraction of cells directly affects swarms coordination since those that are still mobile are receiving
much fewer accurate messages impairing their ability to move in the correct direction. Thus, as
the fraction of immobile cells increases, we expect several of the mobile cells to make at least
some moves in the wrong direction. Indeed, this is what Taylor and Welch observed in their
experiments. To quantify the impact of immobile agents they measured the ratio between cells
moving towards the food source and those moving away from the food source at a specific time
point. Formally, we define this as:

TRi =
max

{
dS − dji : dS >= dji

}
∣∣∣min

{
dS − dji : dS <= dji

}∣∣∣ (10)

where TRi denotes the tracking ratio during iteration i, dS is the initial distance of the swarm
center from the food source and dji is the distance of cell j from the food source at iteration
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i. In their experiments, cells start far enough from the food source such that the impact of the
food gradient is minimal early on and so cells depend on swarm communication to move in the
correct direction. Thus, when a large fraction of cells is immobile the swarm would expand in
both direction leading to a TR that is close to 1. TR greater than 1 represents chemotactic (or
coordinated) movement.

When mobility is drastically impaired (only 1% of cells can move) Taylor and Welch report
a TR of close to 1 which. The TR increases as the fraction of immobile cells decreases. These
results were then used to identify mutants associated with movement since their TR was reduced
when compared to WT cells.

To test our model in this setting we have simulated the immobilization of different fractions
of cells and for each computed the resulting TR after a set number of iterations. Fig. 4 presents
the resulting tracking ratios when using 10000 cells Note that while in our simulation we observe
a TR that is higher than 1, even when only 0.5% are mobile, this can be attributed to the much
smaller number of cells in our simulations since for a such a small set all mobile cells can likely
communicate with all other mobile cells whereas when the number of cells is larger this ability
may be reduced. However, as was observed in experimental results we also see a rise in TR as
the fraction of mobile cells increases. Further, while the TR obtained by our DGD method for
the least constrained settings (3% mobile) is slightly higher than the Shklarsh et al. TR for the
same setting, the initial TR is significantly lower than the TR obtained by the Shklarsh model
(and closer to the real result) indicating that our model can still capture the communication
capabilities of bacterial cells with weaker assumptions and less computational power.

Fig. 4. Plot of TR vs mobility fraction. The results are generated with 300 independent trials
using swarm population of 10000.

Sensitivity to silent agents

Previous work has shown that some cells in a population become ‘silent’ [25],[26], [27]. These cells
receive messages from the other cells but do not send messages themselves. While such behavior is
beneficial from the individual standpoint (less energy required to secrete the proteins) it may be
harmful for the population as a whole since if these ‘silent’ cells proliferate the population will lose
its ability to utilize communication to improve food search. Recent work has shown that stochastic
activation of such silencing and other individual behavior mechanisms can explain how they can be
advantageously used (for example, for antibiotics resistance) without affecting the overall ability
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to utilize population based coordination. We have thus used the obstacle model again to study
the sensitivity of swarm performance to the fraction of silent cells in the population. For this,
we varied the fraction of silent agents from 0 to 1. As can be seen in Figure 5 up to a certain
threshold we do not see a large impact for the increase in silent cells which supports the recent
findings of [23]. Specifically, based on our models the performance of the population is only 20%
less than the optimal even if 85% of them are silent. These results provide the first quantitative
analysis of this phenomena and can be directly translated to an experimental hypothesis.

We have further analyzed various aspects of the communication model to determine the roles
of each type of the message being sent (orientation, attraction) or sensed (physical proximity), in
terms of the impact on the time taken to reach the food source. See Appendix for details.

Fig. 5. Mean path lengths over silent fractions, based on 100 trials. More silent bins were taken
in the range of .7 to 1 to illustrate the phase transition. Error bars indicate standard deviations.

5 Discussion and conclusions

We have shown, both theoretically and using simulations, that a distributed gradient descent
model can efficiently be implemented under severe limitations on the way the agents communi-
cate. These include limits on the complexity of the messages and the identifiability of the senders,
while at the same time assuming a dynamic environment where neighbors’ locations (and their
influence) constantly change. We have proved that, under reasonable biological assumptions, the
communication algorithm discussed is likely to converge, which helps explain how bacteria can
efficiently coordinate food search in harsh environments, and which improves upon prior models
suggested for this process. Our convergence proof only holds for the attraction information and
does not hold for the repulsion and direction component of the computation performed by each
agent. Since the orientation information is also a vector being averaged (over all neighbors), we
believe the proof can be extended to include this communication term as well, though a key chal-
lenge would be to understand the sometimes competing goals of local versus global improvement
near certain obstacles. Repulsion is more difficult to analyze, since it is not based on averages.
However, as we show in the Appendix, the attraction term has by far the most significant effect
on the performance of the swarm, with the other two communication terms having lesser impacts
on the time it takes cells to reach the food source. Hence, for computational implementation of
the method, it may suffice to use the attraction term, in which case convergence is guaranteed.
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Appendix

A Methods

A.1 Complete update rule for a single cell

Below we present the complete update rule performed by each cell in each of the steps of the
algorithm to compute its new trajectory. At each iteration, there are three communication com-
ponents in the BP model, i) repulsion, ii) orientation, and iii) attraction.

As discussed in the main text, we divide the update into two cases. If there are any cells
within the Repulsion Radius (RR, determined by physical interactions) then the cell moves as
follows:

ui(n) = −
∑

j∈BRR

xi(n)− xj(n)

‖xi(n)− xj(n)‖
, (11)

were xi(n) is the location of agent i at time n. Otherwise (if there are no cells in RR) we set:

ui(n) = DL,T

(∑
j

exp(−(Co‖xi(n)− xj(n))‖)vj(n) +
∑
j

exp(−(Ca‖xi(n)− xj(n))‖)(xi(n)− xj(n))

‖xi(n)− xj(n)‖

)
. (12)

In either case, the cell updates its own position by moving according to

xi(n+ 1) = xi(n) + γi(n)(ui(n) + si(n)),

where si(n) is the belief of cell i at time n based on its sensing of the food gradient (si(n) is a
pseudogradient, as shown in Lemma 1 below). γi(n) is the step size for agent i at time n, which,
as discussed in the main text, is a function of the food gradient at the cell’s location (a detailed
formulation of γi(n) is in the proof of Lemma 2 below).

A.2 Convergence Theorem

In a simplified model that incorporates only the attraction term of communication, our conver-
gence theorem follows from a general convergence theorem proven by Tsitsiklis et al. for a broad
class of distributed pseudogradient descent algorithms (Theorem 3.1 and Corollary 3.1 of [13]).
Work is needed only to show that our setting satisfies the six assumptions therein (listed and
justified below). In order to match the notation of [13], we note that the update equation (using
only the attraction term) can be written in the form

xi(n+ 1) =

M∑
j

aij(n)xj(n) + γi(n)si(n) (13)

where aij(n) is the edge weight between cells i and j at time n.

Assumptions The assumptions needed for the general convergence proof are the following:

A1 There is some α > 0 such that aij(n) ≥ α, for all times n and distinct agents i and j.
A2 There exists a constant B such that the time between consecutive communications between

any pair of distinct agents i and j is at most B1.
A3 The number of messages communications between any two distinct agents during any duration

of length B1 is bounded by some constant B2.
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A4 J is continuously differentiable and its gradient ∇xJ is Lipschitz continuous.

A5 The conclusion of Lemma 1.

A6 The conclusion of Lemma 2.

Below we discuss why each of these holds in our setting.

A1 Since the edge weight aij(n) is a positive, strictly decreasing function of the distance
‖xi(n) − xj(n)‖2 and, almost surely, the agents move only within a bounded region of R2, such
an α = infi 6=j,n aij(n) > 0 exists almost surely.

A2, A3 This point is somewhat subtle, and quite important for the generality of our work.
In our model, each agent regularly (after a fixed number of rounds on individual movement, as
discussed in the proof of Lemma 1 below) measures the weighted average of the signals from all
other agents in the swarm, through the update equation (13). The key observation here is that, in
[13] (which only considers communication as being between pairs of agents, and hence phrases the
assumption as above), each agent’s update depends only on the weighted average of the messages
received. Thus, this assumption is weaker than the assumption that the weighted average in
the update equation incorporates all other agents (with weights satisfying the constraints of
assumption A1). By construction, our model satisfies this. 2

A4 Food is assumed to diffuse smoothly from its source (usually according to a Bessel, Gaus-
sian, or exponential decay function of distance).

Lemma 1 Conditioned on the history of the algorithm, the expected gradient perceived
directly by each agent (not accounting for information from the swarm) is a descent direction.
That is,

E

[
dJ

dx
(xi(n))si(n)

]
≤ 0.

In order to guarantee this we will allow agents to tumble a fixed number of times between rounds
of communication, so that, in expectation, they will find and move along a descent direction.

Proof of Lemma 1: We first show the case when the direction after a tumble is chosen uniformly
at random, in which case, the proof is straightforward. For sake of generality, we then show the case
where the new angle is chosen according to any distribution (such a Gaussian) satisfying a certain
weak uniformity condition, allowing multiple tumbles within each round of communication.

Uniform Case: In each iteration n > 1, if the previous direction si(n − 1) is not a descent

direction (i.e., if J(xi(n)) ≤ J(xi(n−1))), then si(n)
‖si(n)‖2 ∼ Unif(∂B1(0)), 3 and the speed ‖si(n)‖2

is deterministic given si(n− 1) and xi(n− 1). Since the function s 7→ ∇xJ(xi(n)) · s is linear, its
expectation over a uniformly distributed variable is 0, and so

E
[
∇xJ(xi(n)) · si(n)

∣∣Fn] = ‖si(n)‖2E
[
∇xJ(xi(n)) · si(n)

‖si(n)‖2

∣∣∣∣Fn] = 0.

If the previous direction is a descent direction, the agent retains its previous direction. ut
General Case: Now consider a more general algorithm parameterized by a tumbling distri-

bution with density D on [−π, π] (above, D is uniform). In general, a single tumble may be
insufficient to ensure that the expected resulting direction is a descent direction, and so multiple

2 Compare Example V of [13], which considers a similar communication pattern in a more abstract setting.
3 B1(0) denotes the unit ball centered at 0, and ∂B1(0) denotes it boundary.
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tumbles may be necessary. We assume that D is somewhat uniform in the following sense:

0 < c := inf
θ∈[−π,π)

∫ θ+π/2

θ
D(φ2π) dφ, 4

i.e., the agent has probability at least c ∈ (0, 1/4] of tumbling toward any particular quadrant.
This assumption certainly holds for the Gaussian tumbling distribution we use in the main paper,
but also allows a broad range of other possibilities, including any distribution whose density is
lower bounded away from 0 on [−π, π].

To prove the lemma, let θ0 = θ(∇xJ(xi(n)), si), θ`+1 = θ`+∆θ`, where each ∆θ` ∼ D denotes
the change in angle due to the `th tumble. 5 With probability in (c, 1−3c), any particular |θ`| ≤ π

4 ,
in which case

∇xJ(xi(n)) · si(n) ≥ 1√
2
‖J(xi(n))‖2‖si(n)‖2.

Also, with probability in (2c, 1 − 2c), |θ`| ≥ π
2 for all ` ∈ {1, . . . , k}, in which case, by the

Cauchy-Schwarz inequality, ∇xJ(xi(n)) · si(n) ≥ −‖J(xi(n))‖2‖si(n)‖2. Otherwise, |θ`| ∈
(
π
4 ,

π
2

)
,

so ∇xJ(xi(n)) · si(n) ≥ 0.
Let L ∈ {0, . . . , k} denote the last ` at which θ` >

π
2 (i.e., after which, the agent maintains its

current direction for the remaining k − ` tumbles). Since L = ` if and only if |θ0, . . . , θ`| ≥ π
2 θ`

E
[
∇xJ(xi(n)) · si(n)

∣∣Fn] =
k∑
`=0

E
[
∇xJ(xi(n)) · si(n)

∣∣Fn, L = `
]
P [L = `]

≥
k∑
`=0

‖∇xJ(xi(n))‖2‖si(n)‖2
(

1√
2

(k − `)− `
)

2`c`+1

=
c‖∇xJ(xi(n))‖2‖si(n)‖2√

2

(
k∑
`=0

(2c)`
(
k −

(
1 +
√

2
)
`
))

.

It is easy to see that this quantity is positive for sufficiently large k, since, as k →∞,
∑k

`=0 `(2c)
`

converges while k
∑k

`=0(2c)
` diverges (recalling c ∈ (0, 1/4)). ut

Lemma 2 The variance of the updates goes to zero as the cost function goes to zero. That
is, for some K0 > 0,

E
[
‖si(n)‖2

]
≤ −K0E

[
dJ

dx
(xi(n))si(n)

]
.

Proof of Lemma 2: We assume here that the food follows an isotropic Gaussian distribution
centered at the origin. That is, for some σ > 0, ∀x ∈ R2,

J(x) =
1√

2πσ2
exp

(
−‖x‖

2
2

2σ2

)
.

Then, for all agents i and times n,

dJ

dx
(xi(n)) = − 1√

2πσ2
exp

(
−‖xi(n)‖22

2σ2

)
xi(n)

4 For x ∈ R, xπ = ((x+ π) mod 2π)− π denotes the angle in [−π, π] equivalent to x.
5 For two vectors u and v, θ(u, v) = cos−1

(
u·v

‖u‖2‖v‖2

)
denotes the (smallest) angle between u and v. For notational

convenience, we measure angles as lying in [−π, π], with 0 denoting the direction of ∇xJ(xi(n)).
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Plugging in

xi(n) =
∑
j

aij(n)xj(n) + γi(n)si(n)

gives

dJ

dx
(xi(n)) = − 1√

2πσ2
exp

(
−‖xi(n)‖2

2σ2

)∑
j

aij(n)xj(n)− 1√
2πσ

exp

(
−‖xi(n)‖2

2σ2

)
γi(n)si(n)

Now the right-hand side of the lemma:

−K0E
[
dJ

dx
(xi(n))si(n)

]

= K0E

 1√
2πσ2

exp

(
−‖xi(n)‖2

2σ2

)
si(n)

∑
j

aij(n)xj(n) +
1√

2πσ2
exp

(
−‖xi(n)‖2

2σ2

)
γi(n)si(n) · si(n)


≥ K0E

[
1√

2πσ2
exp

(
−‖xi(n)‖2

2σ2

)
γi(n)‖si(n)‖2

]
= E

[
exp

(
−‖xi(n)‖2

2σ2

)
K ′γi(n)‖si(n)‖2

]
≥ E

[
‖si(n)‖2

]
when the step size γi(n) satisfies K ′γi(n) ≥ exp

(
‖xi(n)‖2

2σ2

)
. ut

A.3 Terrain Modeling and Swarm Initialization

We use a similar terrain model to the one used in [12]. Food density and terrain are stationary
over time. Food is assumed to be diffuse through the terrain, with a global maximum at the
source. Specifically, we modeled the food density as an isotropic Gaussian function:

J(r) =
K√
2πσ2

exp

(
− r2

2σ2

)
. (14)

In addition, we introduce random obstacles in the form of local minima. In particular, we use the
half cosine function to generate field of obstacles:

g(r) = min(0,−4(cos(πr/4) + 0.5),

from which we randomly remove a small number of obstacles to increase trial-to-trial variability.
Each swarm is generated by choosing swarm center at a certain fixed distance from the food

source, with the angle along this distance circle chosen uniformly at random. Agents are placed
uniformly in a small square centered at the swarm center, with the constraint that no agent starts
on an obstacle. See Figure 6 for an example of a single trial initialization.

B Simulation parameters

The results presented in the paper are produced with swarms consisting of 30 agents (unless
otherwise stated). For the simulation we use a Repulsion Radius of 0.1 and for the [12] model we
use 4.0 for Orientation Radius and 4.3 for the Attraction Radius. The discretized thresholding
operator DL,T in our model used L = 4 and T = 3 (see [20]).

All the probability distributions are generated from 300 independent trials. For each trial the
number of iterations required for at least 75% of the agents to reach within a fixed radius of the
food source was measured. We have set this source radius at 2.5. For modeling the food source
we have used σ2 = 1000 and K = 200 in equation (14).
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Fig. 6. A single swarm in our modelled terrain, immediately after initialization. Contour lines
illustrate food concentration (maximized at the origin) and obstacles. Black dots indicate indi-
vidual agents.

C Additional Results

Effect of different communication components

In addition to the results presented in the main paper we also tested the effects of each of the
signals the agent / cell utilizes as part of the DGD model. These include: i) repulsion information,
ii) orientation, and iii) attraction. We have evaluated the behavior of the swarms in the absence
of either of these component to determine their impact of the ability of cells to efficiently reach
the food source.

Fig. 7 presents the simulation results for this analysis. As can be seen, while performance
decreases when the orientation and repulsion components are disabled (average number of it-
erations required to reach the food source increases from 105 to 118 for repulsion and 105 to
115 for orientation) the effect is not large. In contrast the attraction component has a large ef-
fect on performance. Specifically, removing this component almost doubles the mean path length
(168 iterations). One reason for this observation is that the decay in the weights of attraction
components is one fourth of that of orientation (see methods section in the paper), providing
opportunity for the swarms to have a longer range of interactions which dominates the swarm
movement.

Effect of using distances to weight messages

To test the impact of taking the distance into account when computing the local descent function
we have run our method with and without using distance based weights, keeping all the other
parameter settings same. Fig. 8 presents the results of this analysis using two sequential swarms.
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Fig. 7. Effect of the removal of different communication components. µ denotes the average
number of iterations required for each agent to reach the objective.

As can be seen, for both the first and second swarm, weighted communication leads to better
performance than unweighted communication. Specifically, without using weights we see 10% and
22% increase in the number of iterations cells need to reach the food source for the first and second
swarm, respectively. Thus, using the weighted version, which is also likely biologically correct,
improves performance of such food search.

Effect of swarm size

Another issue we tested is the impact of swarm size. As can be seen in Fig. 9), overall performance
improves with the increase in swarm size indicating that communication helps cells reach their
goal faster. However, depending on how we model the repulsion distance, at some point such
increase can lead to crowding. When the agents are too close to each other, their movement is
highly constrained and mostly dominated by the repulsion effect. Therefore it takes much longer
for a larger swarm to reach the food source. From our simulations we find that swarm size 30 to
50 gives the optimal performance.
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Fig. 8. Comparison of swarm performance using weighted and unweighted communication. µ
denotes the average number of iterations required for each agent to reach the objective.

Fig. 9. Distribution of path length over different swarm sizes. N denotes the number of agents in
the swarm and µ denotes the average number of iterations required for each agent to reach the
objective.
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