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Introduction

There are several cases in which distributed networks need to perform some sort of joint computation [1].
One example of such joint computational problem is belief propagation, a process in which distributed
agents share their beliefs with other agents so each agent can determine an appropriate state or action.
Computational solutions for belief propagation involve a set of nodes performing local computations and
sharing their beliefs with neighboring nodes across weighted edges. Each node is often assigned an initial
score or belief (which can be derived based on local sensing or observation). Starting with this score nodes
propagate information along the edges of the graph until their (local) belief converges. Belief propagation
methods were originally developed to perform statistical inference in graphical models[2] and are widely used
for image analysis [3], in error correcting codes [4], to assign function to genes [5], and by sensor networks in
remote locations that need to jointly decide whether a specific event happened (for example, an earthquake
or river contamination [6]).

Standard belief propagation algorithms often require sending large messages (usually continuous proba-
bility values), assume unique identifiability of senders (since each has a different weight) and require that
nodes perform substantial computations at each iteration [7]. These requirements may be problematic for
distributed sensor or wireless networks that operate under strict communication and computation constraints
and need to conserve energy and battery life [8], [9]. Coordination and computation over networks is a shared
goal between computational and biological systems [8]. Specifically, bacterial cells often coordinate using
chemotaxis to detect food sources [10]. Given the environments they reside in, these cells need to both, move
towards available food sources and avoid obstacles along the way. To achieve this goal each bacterial cell
employs a number of sensors and integrates information from these sensors to determine its direction and
velocity at each time point. These sensors include gradient detectors that determine food location [11], com-
munity sensors to gather information from other bacteria cells which presumably are also moving towards
the food source and may have already detected (and avoided) obstacles, and sensors to avoid collisions with
nearby bacterial cells.

This process closely resembles belief propagation. On the one hand each cell has its own belief (the food
gradient it detects) but on the other it relies on information from neighboring cells to refine its trajectory
based on possible obstacles and the beliefs of its neighbors. Recent models for this process [12] assume both
continuous messages (or the equivalent ability to detect detailed information regarding neighboring cells)
and identifiability of these neighbors, yet both assumptions seem unlikely for real bacteria.

In this work we developed a belief propagation model that solves the bacterial food search problem
while minimizing both communication and computation. Compared to many prior algorithms for collective
navigation based on flocks of birds [14], and foraging ants [15], our methods do not assume identifiability of
individual agents and uses sparse communication while still being able to handle complicated environments
with several other cells and obstacles. The limited computation and communication model we assume makes
this method appropriate to other problems in which severe constraints exist on these resources.

Methods

We first briefly describe the model introduced by Shklarsh et al. [12], which attempts to explain how swarms
of bacterial cells coordinate food search. Next, we describe our low complexity communication algorithm
based on the stone-age distributed communication model [16].



The Shklarsh et al. Model

The model assumes that four issues affect the movement of an individual cell: (1) The cells own sensing of
the food gradient; (2) Repulsion from very close cells to avoid collisions; (3) Velocity adjustments based on
cells that are close, but not too close; and (4) Alignment (in terms of trajectory) with cells that are further
away to avoid group fragmentation. Except for (2) above, which deals with physical constraints in terms of
possible movement, the other issues all attempt to combine local (personal) and global (population wide)
information to determine the best speed and direction for the next step. Note that by relying on cells that
are (presumably) further along in their food search allows an individual cell to avoid potential obstacles that
it cannot observe on its own.

The model assumes that cells can determine specific speeds and location for all other cells (an assumption
we will relax in the next section). Given these observations, at each time step, each cell’s movement is
computed as a weighted sum of three factors: (1) the cell’s previous velocity weighted by the current
food gradient (i.e., the change in food density at the current time step from the previous time step); (2)
displacement and velocity information communicated by neighboring cells and (3) internal movement noise,
modeled as a zero-mean Gaussian perturbation of the movement direction. Factors 1 and 3 are internal to
the cell while factor 2 is based on communication with other cells and is computed in the following way:
when an agent has a neighbor within the radius of repulsion, the communication term u; is set to
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where z; € R? and v; € R? are the position and velocity of agent i, Br(z;) denotes the ball of radius R
centered at z; (Figure[l), and || - || denotes Euclidean distance. Following this calculation, collision avoidance
is first used to adjust the movement in the opposite direction using Equation above. If there are no other
cells within distance RR, the cell moves according to a weighted sum in Equation above.
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Figure 1: Dynamics of repulsion, orientation, and attraction for a single bacterial cell.

A more realistic and computationally efficient model

A major computational difficulty in the Shklarsh model is that interactions are highly dependent on com-
munication of exact displacement and velocity between cells. Each agent A must know the radius (RR, RO,
and RA) in which each other agent B lies, and, based on this, move in a direction away from, parallel to,
or toward B. Furthermore, this information is assumed to be communicated with fidelity independent of the
actual distance between agents (Equations and above both sum unit vectors). For real cells, this



information is communicated via secretion and detection of chemicals which diffuse indistinguishably (i.e.,
chemicals secreted by one cell are indistinguishable from those secreted by another). Hence the information
available to a cell is actually a gradient of attractive and repulsive chemicals. Also, while a cell may be
able to distinguish between some concentration levels, it is unlikely that it can use continuous values, and
it certainly cannot determine the number of other cells present, which is required, for example, on the right
hand part of Equation . We propose a new model that improves upon the Shklarsh model in the following
ways:

a) Discrete vs. continuous values: We use a reduced set of discrete messages, and do not assume that
cells know the number of active cells in the swarm.

b) Anonymity: We do not assume that cells can uniquely identify the sender of any message.

¢) One-two-many communication: We use a formal communication model used to analyze biological
systems: stone-age distributed computing [16]. This model allows each cell to only count up to a small
threshold value.

d) Distance-based weighting: We assume the influence of a neighbor on the orientation and attraction
components of interaction decays with distance.

In our model, if an agent has a neighbor within the radius of repulsion, the communication term in Equation
(1)) simply sums up the number of cells within this radius without relying on their exact location. For
Equation we use the following modification:
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where L is a positive integer denoting the number of communicable velocity levels, T denotes the stone-age
computing threshold, Dy, r denotes the discretization and thresholding (using the stone age model) function,
and r : R? — R? denotes a vector “rounding” function that best approximates an input vector by one of
eight unit-length cardinal vectors ([+1, 0], [£v/2, £v/2], [0, +1]).

Under this model, bacteria need only 3 4 log, L bits to communicate velocity or attraction information
(log, 8 bits for direction and log, L bits for magnitude). The contribution of neighbors at distance d also
decays as d~!, so that further away cells have reduced impact. On the other hand, cells no longer need to
know the precise radius (RO or RA) within which each neighbor falls, since we remove the set difference
from the second sum in Equation .

Experiment

We compared the original Shklarsh et al. model to these 3 modifications. The first modification (*weighted’)
incorporated the weighting components for orientation and attraction. The second modification (’discrete’)
incorporated the L level discretization and T threshold components of Equation for orientation. The
third modification is just the combination of the previous two (discretizing before weighting).

Setup: We used a swarm of n = 50 cells, radii RR = 0.1, RO = 2, and RA = 5, noise with ¢ = 0.5. For
discretized models, we used L = 4 and T = 1, reducing orientation information communicated to 5 bits.

Testbed: Food density and terrain were treated as constant over time. Food density was modeled as
a 0-order modified Bessel function of the second kind Ky (the solution to a system of differential equations
modeling diffusion from a point source). The swarm is searching for the global maximum (the food source)
of the density. In addition, we introduce obstacles in the form of local minima. In particular, we use the
following field of obstacles:

f(z) = e1 Ko(||z])) + min(0, cos(z1) cos(zz) + ¢2). (4)



where ¢; and co are small positive constants. Some additional obstacles in the forms of parabolic local
minima were also added manually. The swarm was initialized by placing cells uniformly at random in a
predetermined region. In experiments involving a second swarm, the second swarm was placed in the same
manner once the first swarm had located the food source.

Evaluation: We measure performance of the algorithm on a particular trial by the mean path length;
i.e., the number of iterations before the mean of the swarm is within a small radius of the food source.

Results

For each of 300 trials of each model, we recorded (a) the number of iterations required to find the food
source (path length) and (b) the distance from the food source at each iteration (see Figure[2)). The weighted
versions of the model perform significantly better, each converging 1.5-2 times faster than the corresponding
unweighted version. In particular, the weighted versions are much better at maneuvering around obstacles,
for which bacteria are best informed only by their immediate neighbors rather than further neighbors who
have, for instance, already traversed the obstacle. Surprisingly, the simplified (discrete) communication
models also perform better than the corresponding continuous version. This may be because communicated
velocity is denoised by rounding down, since only agents relatively confident in their direction are fast moving.
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Figure 2: (a) Distribution of mean path lengths and (b) average distance from food source over time, for
each model.

We also studied the effect of a bacteria swarm already at the food source on a second swarm of the same
size as it searches for the food source from the same starting location. Results are qualitatively similar to the
results presented in Figure 2, with the weighted discrete version outperforming all other versions. However,
the second swarm consistently converges to the food source more quickly, since it can rely on information
from the first swarm. Detailed results for the second swarm are omitted for lack of space.

To conclude, our results indicate that a globally weighted reduced communication model provides a more
efficient algorithm than a more detailed computational model indicating that for noisy environments with
several obstacles the bacteria based belief propagation method can improve over current, more complex,
computational methods.

References

[1] J.-Y. Chen, G. Pandurangan, and D. Xu, “Robust computation of aggregates in wireless sensor networks:
distributed randomized algorithms and analysis,” in Proceedings of the 4th international symposium on
Information processing in sensor networks, Piscataway, NJ, USA, 2005.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York, NY: Springer



New York, 2009.

[3] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief propagation for early vision,” in Proceedings
of the 2004 TEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR
2004, 2004, vol. 1, pp. 12611268 Vol.1.

[4] E. R. Ackermann, T. L. Grobler, A. J. Van Zyl, and J. C. Olivier, “Belief propagation for nonlinear block
codes,” in AFRICON, 2011, 2011, pp. 16.

[5] S. Letovsky and S. Kasif, “Predicting protein function from protein/protein interaction data: a proba-
bilistic approach,” Bioinforma. Oxf. Engl., vol. 19 Suppl 1, pp. 1197204, 2003.

[6] Keat G. Ong, Xiping Yang, Niloy Mukherjee, Haidong Wang, Shrawan Surender, and Craig A. Grimes,
“A Wireless Sensor Network for Long-term Monitoring of Aquatic Environments: Design and Implementa-
tion,” Sens. Lett., vol. 2, no. 1, pp. 4857, 2004.

[7] M. Mzard and A. Montanari, Information, Physics, and Computation. Oxford; New York: OUP Oxford,
2009.

[8] S. Navlakha and Z. Bar-Joseph, “Algorithms in nature: the convergence of systems biology and compu-
tational thinking,” Mol. Syst. Biol., vol. 7, p. 546, 2011.

[9] J. Carle and D. Simplot-Ryl, “Energy-efficient area monitoring for sensor networks,” Computer, vol. 37,
no. 2, pp. 4046, Feb. 2004.

[10] D. Claessen, D. E. Rozen, O. P. Kuipers, L. Sgaard-Andersen, and G. P. van Wezel, “Bacterial solutions
to multicellularity: a tale of biofilms, filaments and fruiting bodies,” Nat. Rev. Microbiol., vol. 12, no. 2,
pp- 115124, Feb. 2014.

[11] R. M. Macnab and D. E. Koshland Jr, “The gradient-sensing mechanism in bacterial chemotaxis,” Proc.
Natl. Acad. Sci. U. S. A., vol. 69, no. 9, pp. 25092512, Sep. 1972.

[12] A. Shklarsh, G. Ariel, E. Schneidman, and E. Ben-Jacob, “Smart Swarms of Bacteria-Inspired Agents
with Performance Adaptable Interactions,” PLoS Comput Biol, vol. 7, no. 9, p. €1002177, Sep. 2011.

[13] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, “Effective leadership and decision-making in
animal groups on the move,” Nature, vol. 433, no. 7025, pp. 513516, Feb. 2005.

[14] B. Chazelle, “Natural algorithms and influence systems,” Commun. ACM, vol. 55, no. 12, p. 101, Dec.
2012.

[15] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,” Theor. Comput. Sci., vol. 344,
no. 23, pp. 243278, Nov. 2005.

[16] Y. Emek and R. Wattenhofer, “Stone age distributed computing,” Proceedings of the 2013 ACM sym-
posium on Principles of distributed computing Pages 137-146, 2013.



