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Abstract

We analyze a plug-in estimator for a large class of integral functionals of one
or more continuous probability densities. This class includes important families
of entropy, divergence, mutual information, and their conditional versions. For
densities on the d-dimensional unit cube [0, 1]d that lie in a β-Hölder smoothness
class, we prove our estimator converges at the rate O

(
n−

β
β+d

)
. Furthermore, we

prove the estimator is exponentially concentrated about its mean, whereas most
previous related results have proven only expected error bounds on estimators.

1 Introduction

Many important quantities in machine learning and statistics can be viewed as integral functionals
of one of more continuous probability densities; that is, quanitities of the form

F (p1, · · · , pk) =

∫
X1×···×Xk

f(p1(x1), . . . , pk(xk)) d(x1, . . . , xk),

where p1, · · · , pk are probability densities of random variables taking values in X1, · · · , Xk, re-
spectively, and f : Rk → R is some measurable function. For simplicity, we refer to such integral
functionals of densities as ‘density functionals’. In this paper, we study the problem of estimating
density functionals. In our framework, we assume that the underlying distributions are not given
explicitly. Only samples of n independent and identically distributed (i.i.d.) points from each of the
unknown, continuous, nonparametric distributions p1, · · · , pk are given.

1.1 Motivations and Goals

One density functional of interest is Conditional Mutual Information (CMI), a measure of con-
ditional dependence of random variables, which comes in several varieties including Rényi-α and
Tsallis-α CMI (of which Shannon CMI is the α→ 1 limit case). Estimating conditional dependence
in a consistent manner is a crucial problem in machine learning and statistics; for many applications,
it is important to determine how the relationship between two variables changes when we observe
additional variables. For example, upon observing a third variable, two correlated variables may be-
come independent, and, similarly, two independent variables may become dependent. Hence, CMI
estimators can be used in many scientific areas to detect confounding variables and avoid infering
causation from apparent correlation [20, 16]. Conditional dependencies are also central to Bayesian
network learning [7, 35], where CMI estimation can be used to verify compatibility of a particular
Bayes net with observed data under a local Markov assumption.

Other important density functionals are divergences between probability distributions, including
Rényi-α [25] and Tsallis-α [32] divergences (of which Kullback-Leibler (KL) divergence [9] is the
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α → 1 limit case), and Lp divergence. Divergence estimators can be used to extend machine
learning algorithms for regression, classification, and clustering from the standard setting where in-
puts are finite-dimensional feature vectors to settings where inputs are sets or distributions [23, 19].
Entropy and mutual information (MI) can be estimated as special cases of divergences. Entropy
estimators are used in goodness-of-fit testing [5], parameter estimation in semi-parametric models
[34], and texture classification [6], and MI estimators are used in feature selection [21], clustering
[1], optimal experimental design [13], and boosting and facial expression recognition [26]. Both en-
tropy and mutual information estimators are used in independent component and subspace analysis
[10, 30] and image registration [6]. Further applications of divergence estimation are in [11].

Despite the practical utility of density functional estimators, little is known about their statistical
performance, especially for functionals of more than one density. In particular, few density func-
tional estimators have known convergence rates, and, to the best of our knowledge, no finite sample
exponential concentration bounds have been derived for general density functional estimators. One
consequence of this exponential bound is that, using a union bound, we can guarantee accuracy of
multiple estimates simultaneously. For example, [14] shows how this can be applied to optimally
analyze forest density estimation algorithms. Because the CMI of variables X and Y given a third
variable Z is zero if and only X and Y are conditionally independent given Z, by estimating CMI
with a confidence interval, we can test for conditional independence with bounded type I error prob-
abilty.

Our main contribution is to derive convergence rates and an exponential concentration inequality
for a particular, consistent, nonparametric estimator for large class of density functionals, including
conditional density functionals. We also apply our concentration inequality to the important case of
Rényi-α CMI.

1.2 Related Work

Although lower bounds are not known for estimation of general density functionals (of arbitrarily
many densities), [2] lower bounded the convergence rate for estimators of functionals of a single
density (e.g., entropy functionals) by O

(
n−4β/(4β+d)

)
. [8] extended this lower bound to the two-

density cases of L2, Rényi-α, and Tsallis-α divergences and gave plug-in estimators which achieve
this rate. These estimators enjoy the parametric rate of O

(
n−1/2

)
when β > d/4, and work by

optimally estimating the density and then applying a correction to the plug-in estimate. In contrast,
our estimator undersmooths the density, and converges at a slower rate of O

(
n−β/(β+d)

)
when

β < d (and the parametric rate O
(
n−1/2

)
when β ≥ d), but obeys an exponential concentration

inequality, which is not known for the estimators of [8].

Another exception for f -divergences is provided by [18], using empirical risk minimization. This
approach involves solving an∞-dimensional convex minimization problem which be reduced to an
n-dimensional problem for certain function classes defined by reproducing kernel Hilbert spaces (n
is the sample size). When n is large, these optimization problems can still be very demanding. They
studied the estimator’s convergence rate, but did not derive concentration bounds.

A number of papers have studied k-nearest-neighbors estimators, primarily for Rényiα density func-
tionals including entropy [12], divergence [33] and conditional divergence and MI [22]. These esti-
mators work directly, without the intermediate density estimation step, and generally have proofs of
consistency, but their convergence rates and dependence on k, α, and the dimension are unknown.
One recent exception is a k-nearest-neighbors based estimator that converges at the parametric rate
when β > d, using an optimally weighted ensemble of weak estimators [28, 17]. These estimators
appear to perform well in higher dimensions, but rates for these estimators require that k → ∞ as
n→∞, causing computational difficulties for large samples.

Although the literature on dependence measures is huge, few estimators have been generalized to the
conditional case [4, 24]. There is some work on testing conditional dependence [29, 3], but, unlike
CMI estimation, these tests are intended to simply accept or reject the hypothesis that variables
are conditionally independent, rather than to measure conditional dependence. Our exponential
concentration inequality also suggests a new test for conditional independence.

This paper continues a line of work begun in [14] and continued in [27]. [14] proved an exponential
concentration inequality for an estimator of Shannon entropy and MI in the 2-dimensional case.
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[27] used similar techniques to derive an exponential concentration inequality for an estimator of
Rényi-α divergence in d dimensions, for a larger family of densities. Both used plug-in estimators
based on a mirrored kernel density estimator (KDE) on [0, 1]d. Our work generalizes these results to
a much larger class of density functionals, as well as to conditional density functionals (see Section
6). In particular, we use a plug-in estimator for general density functionals based on the same
mirrored KDE, and also use some lemmas regarding this KDE proven in [27]. By considering the
more general density functional case, we are also able to significantly simplify the proofs of the
convergence rate and exponential concentration inequality.

Organization

In Section 2, we establish the theoretical context of our work, including notation, the precise prob-
lem statement, and our estimator. In Section 3, we outline our main theoretical results and state
some consequences. Sections 4 and 5 give precise statements and proofs of the results in Section 3.
Finally, in Section 6, we extend our results to conditional density functionals, and state the conse-
quences in the particular case of Rényi-α CMI.

2 Density Functional Estimator

2.1 Notation

For an integer k, [k] = {1, · · · , k} denotes the set of positive integers at most k. Using the notation
of multi-indices common in multivariable calculus, Nd denotes the set of d-tuples of non-negative
integers, which we denote with a vector symbol~·, and, for~i ∈ Nd,

D
~i :=

∂|
~i|

∂i1x1 · · · ∂idxd
and |~i| =

d∑
k=1

ik.

For fixed β, L > 0, r ≥ 1, and a positive integer d, we will work with densities in the following
bounded subset of a β-Hölder space:

CβL,r([0, 1]d) :=

p : [0, 1]d → R

∣∣∣∣∣∣∣ sup
x 6=y∈D
|~i|=`

|D~ip(x)−D~ip(y)|
‖x− y‖(β−`)

 , (1)

where ` = bβc is the greatest integer strictly less than β, and ‖ · ‖r : Rd → R is the usual r-norm.
To correct for boundary bias, we will require the densities to be nearly constant near the boundary
of [0, 1]d, in that their derivatives vanish at the boundary. Hence, we work with densities in

Σ(β, L, r, d) :=

{
p ∈ CβL,r([0, 1]d)

∣∣∣∣∣ max
1≤|~i|≤`

|D~ip(x)| → 0 as dist(x, ∂[0, 1]d)→ 0

}
, (2)

where ∂[0, 1]d = {x ∈ [0, 1]d : xj ∈ {0, 1} for some j ∈ [d]}.

2.2 Problem Statement

For each i ∈ [k] letXi be a di-dimensional random vector taking values inXi := [0, 1]di , distributed
according to a density pi : X → R. For an appropriately smooth function f : Rk → R, we are
interested in a using random sample of n i.i.d. points from the distribution of each Xi to estimate

F (p1, . . . , pk) :=

∫
X1×···×Xk

f(p1(x1), . . . , pk(xk)) d(x1, . . . , xk). (3)

2.3 Estimator

For a fixed bandwidth h, we first use the mirrored kernel density estimator (KDE) p̂i described in
[27] to estimate each density pi. We then use a plug-in estimate of F (p1, . . . , pk).

F (p̂1, . . . , p̂k) :=

∫
X1×···×Xk

f(p̂1(x1), . . . , p̂k(xk)) d(x1, . . . , xk).

Our main results generalize those of [27] to a broader class of density functionals.
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3 Main Results

In this section, we outline our main theoretical results, proven in Sections 4 and 5, and also discuss
some important corollaries.

We decompose the estimatator’s error into bias and a variance-like terms via the triangle inequality:

|F (p̂1, . . . , p̂k)− F (p1, . . . , pk)| ≤ |F (p̂1, . . . , p̂k)− EF (p̂1, . . . , p̂k)|︸ ︷︷ ︸
variance-like term

+ |EF (p̂1, . . . , p̂k)− F (p1, . . . , pk)|︸ ︷︷ ︸
bias term

.

We will prove the “variance” bound

P (|F (p̂1, . . . , p̂k)− EF (p̂1, . . . , p̂k)| > ε) ≤ 2 exp

(
−2ε2n

C2
V

)
(4)

for all ε > 0 and the bias bound

|EF (p̂1, . . . , p̂k)− F (p1, . . . , pk)| ≤ CB
(
hβ + h2β +

1

nhd

)
, (5)

where d := maxi di, and CV and CB are constant in the sample size n and bandwidth h for exact
values. To the best of our knowledge, this is the first time an exponential inequality like (4) has been
established for general density functional estimation. This variance bound does not depend on h and
the bias bound is minimized by h � n−

1
β+d , we have the convergence rate

|EF (p̂1, . . . , p̂k)− F (p1, . . . , pk)| ∈ O
(
n−

β
β+d

)
.

It is interesting to note that, in optimizing the bandwidth for our density functional estimate, we use
a smaller bandwidth than is optimal for minimizing the bias of the KDE. Intuitively, this reflects the
fact that the plug-in estimator, as an integral functional, performs some additional smoothing.

We can use our exponential concentration bound to obtain a bound on the true variance of
F (p̂1, . . . , p̂k). If G : [0,∞) → R denotes the cumulative distribution function of the squared
deviation of F (p̂1, . . . , p̂k) from its mean, then

1−G(ε) = P
(

(F (p̂1, . . . , p̂k)− EF (p̂1, . . . , p̂k))
2
> ε
)
≤ 2 exp

(
−2εn

C2
V

)
.

Thus,

V[F (p̂1, . . . , p̂k)] = E
[
(F (p̂1, . . . , p̂k)− EF (p̂1, . . . , p̂k))

2
]

=

∫ ∞
0

1−G(ε) dε ≤ 2

∫ ∞
0

exp

(
−2εn

C2
V

)
= C2

V n
−1.

We then have a mean squared error of

E
[
(F (p̂1, . . . , p̂k)− F (p1, . . . , pk))

2
]
∈ O

(
n−1 + n−

2β
β+d

)
,

which is in O(n−1) if β ≥ d and O
(
n−

2β
β+d

)
otherwise.

It should be noted that the constants in both the bias bound and the variance bound depend expo-
nentially on the dimension d. Lower bounds in terms of d are unknown for estimating most density
functionals of interest, and an important open problem is whether this dependence can be made
asymptotically better than exponential.

4 Bias Bound

In this section, we precisely state and prove the bound on the bias of our density functional estimator,
as introduced in Section 3.
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Assume each pi ∈ Σ(β, L, r, d) (for i ∈ [k]), assume f : Rk → R is twice continuously differen-
tiable, with first and second derivatives all bounded in magnitude by some Cf ∈ R, 1 and assume
the kernel K : R→ R has bounded support [−1, 1] and satisfies∫ 1

−1
K(u) du = 1 and

∫ 1

−1
ujK(u) du = 0 for all j ∈ {1, . . . , `}.

Then, there exists a constant CB ∈ R such that

|EF (p̂1, . . . , p̂k)− F (p1, . . . , pk)| ≤ CB
(
hβ + h2β +

1

nhd

)
.

4.1 Proof of Bias Bound

By Taylor’s Theorem, ∀x = (x1, . . . , xk) ∈ X1 × · · · × Xk, for some ξ ∈ Rk on the line segment
between p̂(x) := (p̂1(x1), . . . , p̂k(xk)) and p(x) := (p1(x1), . . . , pk(xk)), letting Hf denote the
Hessian of f

|Ef(p̂(x))− f(p(x))| =
∣∣∣∣E(∇f)(p(x)) · (p̂(x)− p(x)) +

1

2
(p̂(x)− p(x))THf (ξ)(p̂(x)− p(x))

∣∣∣∣
≤ Cf

 k∑
i=1

|Bpi(xi)|+
∑
i<j≤k

|Bpi(xi)Bpj (xj)|+
k∑
i=1

E[p̂i(xi)− pi(xi)]2


where we used that p̂i and p̂j are independent for i 6= j. Applying Hölder’s Inequality,

|EF (p̂1, . . . , p̂k)− F (p1, . . . , pk)| ≤
∫
X1×···×Xk

|Ef(p̂(x))− f(p(x))| dx

≤ Cf

 k∑
i=1

∫
Xi
|Bpi(xi)|+ E[p̂i(xi)− pi(xi)]2 dxi +

∑
i<j≤k

∫
Xi
|Bpi(xi)| dxi

∫
Xj
|Bpj (xj)| dxj


≤ Cf

(
k∑
i=1

√∫
Xi
B2
pi(xi) dxi +

∫
Xi

E[p̂i(xi)− pi(xi)]2 dxi

+
∑
i<j≤k

√∫
Xi
B2
pi(xi) dxi

∫
Xj
B2
pj (xj) dxj

)
.

We now make use of the so-called Bias Lemma proven by [27], which bounds the integrated squared
bias of the mirrored KDE p̂ on [0, 1]d for an arbitrary p ∈ Σ(β, L, r, d). Writing the bias of p̂ at
x ∈ [0, 1]d as Bp(x) = Ep̂(x)− p(x), [27] showed that there exists C > 0 constant in n and h such
that ∫

[0,1]d
B2
p(x) dx ≤ Ch2β . (6)

Applying the Bias Lemma and certain standard results in kernel density estimation (see, for example,
Propositions 1.1 and 1.2 of [31]) gives

|EF (p̂1, . . . , p̂k)− F (p1, . . . , pk)| ≤ C
(
k2hβ + kh2β

)
+
‖K‖d1
nhd

≤ CB
(
hβ + h2β +

1

nhd

)
,

where ‖K‖1 denotes the 1-norm of the kernel. �

1If p1(X1) × · · · × pk(Xk) is known to lie within some cube [κ1, κ2]
k, then it suffices for f to be twice

continuously differentiable on [κ1, κ2]
k (and the boundedness condition follows immediately). This will be

important for our application to Rényi-α Conditional Mutual Information.
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5 Variance Bound

In this section, we precisely state and prove the exponential concentration inequality for our density
functional estimator, as introduced in Section 3. Assume that f is Lipschitz continuous with constant
Cf in the 1-norm on p1(X1)× · · · × pk(Xk) (i.e.,

|f(x)− f(y)| ≤ Cf
∞∑
k=1

|xi − yi|, ∀x, y ∈ p1(X1)× · · · × pk(Xk)). (7)

and assume the kernel K ∈ L1(R) (i.e., it has finite 1-norm). Then, there exists a constant CV ∈ R
such that ∀ε > 0,

P (|F (p̂1, . . . , p̂k)− EF (p̂1, . . . , p̂k)|) ≤ 2 exp

(
−2ε2n

C2
V

)
.

Note that, while we require no assumptions on the densities here, in certain specific applications,
such us for some Rényi-α quantities, where f = log, assumptions such as lower bounds on the
density may be needed to ensure f is Lipschitz on its domain.

5.1 Proof of Variance Bound

Consider i.i.d. samples (x11, . . . , x
n
k ) ∈ X1 × · · · × Xk drawn according to the product distribution

p = p1×· · · pk. In anticipation of using McDiarmid’s Inequality [15], let p̂′j denote the jth mirrored
KDE when the sample xij is replaced by new sample (xij)

′. Then, applying the Lipschitz condition
(7) on f ,

|F (p̂1, . . . , p̂k)− F (p̂1, . . . , p̂
′
j , . . . , p̂k)| ≤ Cf

∫
Xj
|pj(x)− p′j(x)| dx,

since most terms of the sum in (7) are zero. Expanding the definition of the kernel density estimates
p̂j and p̂′j and noting that most terms of the mirrored KDEs p̂j and p̂′j are identical gives

|F (p̂1, . . . , p̂k)− F (p̂1, . . . , p̂
′
j , . . . , p̂k)| = Cf

nhdj

∫
Xj

∣∣∣∣∣Kdj

(
x− xij
h

)
−Kdj

(
x− (xij)

′

h

)∣∣∣∣∣ dx
where Kdj denotes the dj-dimensional mirrored product kernel based on K. Performing a change
of variables to remove h and applying the triangle inequality followed by the bound on the integral
of the mirrored kernel proven in [27],

|F (p̂1, . . . , p̂k)− F (p̂1, . . . , p̂
′
j , . . . , p̂k)| ≤ Cf

n

∫
hXj

∣∣Kdj (x− xij)−Kdj (x− (xij)
′)
∣∣ dx

≤ 2Cf
n

∫
[−1,1]dj
|Kdj (x)| dx ≤ 2Cf

n
‖K‖dj1 =

CV
n
, (8)

for CV = 2Cf maxj ‖K‖
dj
1 . Since F (p̂1, . . . , p̂k) depends on kn independent variables, McDi-

armid’s Inequality then gives, for any ε > 0,

P (|F (p̂1, . . . , p̂k)− F (p1, . . . , pk)| > ε) ≤ 2 exp

(
− 2ε2

knC2
V /n

2

)
= 2 exp

(
−2ε2n

kC2
V

)
. �

6 Extension to Conditional Density Functionals

Our convergence result and concentration bound can be fairly easily adapted to to KDE-based plug-
in estimators for many functionals of interest, including Rényi-α and Tsallis-α entropy, divergence,
and MI, and Lp norms and distances, which have either the same or analytically similar forms as as
the functional (3). As long as the density of the variable being conditioned on is lower bounded on
its domain, our results also extend to conditional density functionals of the form 2

F (P ) =

∫
Z
P (z)f

(∫
X1×···×Xk

g

(
P (x1, z)

P (z)
,
P (x2, z)

P (z)
, . . . ,

P (xk, z)

P (z)

)
d(x1, . . . , xk)

)
dz (9)

2We abuse notation slightly and also use P to denote all of its marginal densities.
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including, for example, Rényi-α conditional entropy, divergence, and mutual information, where f
is the function x 7→ 1

1−α log(x). The proof of this extension for general k is essentially the same as
for the case k = 1, and so, for notational simplicity, we demonstrate the latter.

6.1 Problem Statement, Assumptions, and Estimator

For given dimensions dx, dz ≥ 1, consider random vectors X and Z distributed on unit cubes
X := [0, 1]dx and Z := [0, 1]dz according to a joint density P : X × Z → R. We use a random
sample of 2n i.i.d. points from P to estimate a conditional density functional F (P ), where F has
the form (9).

Suppose that P is in the Hölder class Σ(β, L, r, dx + dz), noting that this implies an analogous
condition on each marginal of P , and suppose that P bounded below and above, i.e., 0 < κ1 :=
infx∈X ,z∈Z P (z) and∞ > κ2 := infx∈X ,z∈Z P (x, z). Suppose also that f and g are continuously
differentiable, with

Cf := sup
x∈[cg,Cg ]

|f(x)| and Cf ′ := sup
x∈[cg,Cg ]

|f ′(x)|, (10)

where

cg := inf g

([
0,
κ2
κ1

])
and Cg := sup g

([
0,
κ2
κ1

])
.

After estimating the densities P (z) and P (x, z) by their mirrored KDEs, using n independent data
samples for each, we clip the estimates of P (x, z) and P (z) below by κ1 and above by κ2 and
denote the resulting density estimates by P̂ . Our estimate F (P̂ ) for F (P ) is simply the result of
plugging P̂ into equation (9).

6.2 Proof of Bounds for Conditional Density Functionals

We bound the error of F (P̂ ) in terms of the error of estimating the corresponding unconditional
density functional using our previous estimator, and then apply our previous results.

Suppose P1 is either the true density P or a plug-in estimate of P computed as described above,
and P2 is a plug-in estimate of P computed in the same manner but using a different data sample.
Applying the triangle inequality twice,

|F (P1)− F (P2)| ≤
∫
Z

∣∣∣∣P1(z)f

(∫
X
g

(
P1(x, z)

P1(z)

)
dx

)
− P2(z)f

(∫
X
g

(
P1(x, z)

P1(z)

)
dx

)∣∣∣∣
+

∣∣∣∣P2(z)f

(∫
X
g

(
P1(x, z)

P1(z)

)
dx

)
− P2(z)f

(∫
X
g

(
P2(x, z)

P2(z)

)
dx

)∣∣∣∣ dz
≤
∫
Z
|P1(z)− P2(z)|

∣∣∣∣f (∫
X
g

(
P1(x, z)

P1(z)

)
dx

)∣∣∣∣
+ P2(z)

∣∣∣∣f (∫
X
g

(
P1(x, z)

P1(z)

)
dx

)
− f

(∫
X
g

(
P2(x, z)

P2(z)

)
dx

)∣∣∣∣ dz
Applying the Mean Value Theorem and the bounds in (10) gives

|F (P1)− F (P2)| ≤
∫
Z
Cf |P1(z)− P2(z)|+ κ2Cf ′

∣∣∣∣∫
X
g

(
P1(x, z)

P1(z)

)
− g

(
P2(x, z)

P2(z)

)
dx

∣∣∣∣ dz
=

∫
Z
Cf |P1(z)− P2(z)|+ κ2Cf ′

∣∣GP1(z)(P1(·, z))−GP2(z)(P2(·, z))
∣∣ dz,

where Gz is the density functional

GP (z)(Q) =

∫
X
g

(
Q(x)

P (z)

)
dx.

Note that, since the data are split to estimate P (z) and P (x, z), GP̂ (z)(P̂ (·, z)) depends on each
data point through only one of these KDEs. In the case that P1 is the true density P , taking the
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expectation and using Fubini’s Theorem gives

E|F (P )− F (P̂ )| ≤
∫
Z
CfE|P (z)− P̂ (z)|+ κ2Cf ′E

∣∣∣GP (z)(P (·, z))−GP̂ (z)(P̂ (·, z))
∣∣∣ dz,

≤Cf

√∫
Z
E(P (z)− P̂ (z))2dz + 2κ2Cf ′CB

(
hβ + h2β +

1

nhd

)
≤ (2κ2Cf ′CB + CfC)

(
hβ + h2β +

1

nhd

)
applying Hölder’s Inequality and our bias bound (5), followed by the bias lemma (6). This extends
our bias bound to conditional density functionals. For the variance bound, consider the case where
P1 and P2 are each mirrored KDE estimates of P , but with one data point resampled (as in the proof
of the variance bound, setting up to use McDiarmid’s Inequality). By the same sequence of steps
used to show (8), ∫

Z
|P1(z)− P2(z)| dz ≤ 2‖K‖dz1

n
,

and ∫
Z

∣∣∣GP (z)(P (·, z))−GP̂ (z)(P̂ (·, z))
∣∣∣ dz ≤ CV

n
.

(by casing on whether the resampled data point was used to estimate P (x, z) or P (z)), for an
appropriate CV depending on supx∈[κ1/κ2,κ2/κ1] |g

′(x)|. Then, by McDiarmid’s Inequality,

P (|F (p̂1, . . . , p̂k)− F (p1, . . . , pk)| > ε) = 2 exp

(
− ε2n

4C2
V

)
. �

6.3 Application to Rényi-α Conditional Mutual Information

As an example, we demonstrate our concentration inequality to the Rényi-α Conditional Mutual
Information (CMI). Consider random vectors X,Y , and Z on X = [0, 1]dx , Y = [0, 1]dy , Z =
[0, 1]dz , respectively. α ∈ (0, 1) ∪ (1,∞), the Rényi-α CMI of X and Y given Z is

I(X;Y |Z) =
1

1− α

∫
Z
P (z) log

∫
X×Y

(
P (x, y, z)

P (z)

)α(
P (x, z)P (y, z)

P (z)2

)1−α

d(x, y) dz. (11)

In this case, the estimator which plugs mirrored KDEs for P (x, y, z), P (x, z), P (y, z), and P (z)

into (11) obeys the concentration inequality (4) with CV = κ∗‖K‖dx+dy+dz1 , where κ∗ depends
only on α, κ1, and κ2.
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estimation. In International Conference on Machine Learning (ICML), 2014.
[28] K. Sricharan, D. Wei, and A. Hero. Ensemble estimators for multivariate entropy estimation,

2013.
[29] L. Su and H. White. A nonparametric Hellinger metric test for conditional independence.

Econometric Theory, 24:829–864, 2008.
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