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Abstract

Sobolev quantities (norms, inner products, and distances) of probability density
functions are important in the theory of nonparametric statistics, but have rarely
been used in practice, partly due to a lack of practical estimators. They also include,
as special cases, L2 quantities which are used in many applications. We propose
and analyze a family of estimators for Sobolev quantities of unknown probability
density functions. We bound the bias and variance of our estimators over finite
samples, finding that they are generally minimax rate-optimal. Our estimators
are significantly more computationally tractable than previous estimators, and
exhibit a statistical/computational trade-off allowing them to adapt to computational
constraints. We also draw theoretical connections to recent work on fast two-sample
testing. Finally, we empirically validate our estimators on synthetic data.

1 Introduction

L2 quantities (i.e., inner products, norms, and distances) of continuous probability density functions
are important information theoretic quantities with many applications in machine learning and signal
processing. For example, estimates of the L2 norm as can be used for goodness-of-fit testing Goria
et al. [2005], image registration and texture classification [Hero et al., 2002], and parameter estimation
in semi-parametric models Wolsztynski et al. [2005]. L2 inner products estimates can be used with
linear or polynomial kernels to generalize kernel methods to inputs which are distributions rather
than numerical vectors. [Póczos et al., 2012b] Estimators of L2 distance have been used for two-
sample testing [Anderson et al., 1994, Pardo, 2005], transduction learning [Quadrianto et al., 2009],
and machine learning on distributional inputs [Póczos et al., 2012a]. Principe [2010] gives further
applications of L2 quantities to adaptive information filtering, classification, and clustering.

L2 quantities are a special case of less-well-known Sobolev quantities. Sobolev norms measure
global smoothness of a function in terms of integrals of squared derivatives. For example, for a
non-negative integer s and a function f : R → R with an sth derivative f (s), the s-order Sobolev
norm ‖ · ‖Hs is given by ‖f‖Hs =

∫
R
(
f (s)(x)

)2
dx (when this quantity is finite). See Section 2 for

more general definitions, and see Leoni [2009] for an introduction to Sobolev spaces.

Estimation of general Sobolev norms has a long history in nonparametric statistics (e.g., Schweder
[1975], Ibragimov and Khasminskii [1978], Hall and Marron [1987], Bickel and Ritov [1988])
This line of work was motivated by the role of Sobolev norms in many semi- and non-parametric



problems, including density estimation, density functional estimation, and regression, (see Tsybakov
[2008], Section 1.7.1) where they dictate the convergence rates of estimators. Despite this, to our
knowledge, these quantities have never been studied in real data, leaving an important gap between
the theory and practice of nonparametric statistics. We suggest this is in part due a lack of practical
estimators for these quantities. For example, the only one of the above estimators that is statistically
minimax-optimal [Bickel and Ritov, 1988] is extremely difficult to compute in practice, requiring
numerical integration over each of O(n2) different kernel density estimates, where n denotes the
sample size. We know of no estimators previously proposed for Sobolev inner products and distances.

The main goal of this paper is to propose and analyze a family of computationally and statistically
efficient estimators for Sobolev inner products, norms, and distances. Our specific contributions are:

1. We propose a family of nonparametric estimators for Sobolev norms, inner products, and
distances (Section 4).

2. We analyze the bias and variance of the estimators. Assuming the underlying density
functions have bounded support in RD and lie in a Sobolev class of sufficient smoothness
parametrized by s′, we show that the estimator for Sobolev quantities of order s < s′

converges to the true value at the “parametric” rate of O(n−1) in mean squared error when

s′ ≥ 2s+D/4, and at a slower rate of O
(
n

8(s−s′)
4s′+D

)
otherwise. (Section 5).

3. We derive asymptotic distributions for our estimators, and we use these to derive tests for
the general statistical problem of two-sample testing. We also draw theoretical connections
between our test and the recent work on nonparametric two-sample testing. (Section 9).

4. We validate our theoretical results on simulated data. (Section 8).

In terms of mean squared error, minimax lower bounds matching our convergence rates over Sobolev
or Hölder smoothness classes have been shown by Krishnamurthy et al. [2014b] for s = 0 (i.e., L2

quantities), and Birgé and Massart [1995] for Sobolev norms with integer s. We conjecture but do
not prove that our estimator is minimax rate-optimal for all Sobolev quantities and s ∈ [0,∞).

As described in Section 7, our estimators are computable in O(n1+ε) time using only basic matrix
operations, where n is the sample size and ε ∈ (0, 1) is a tunable parameter trading statistical and
computational efficiency; the smallest value of ε at which the estimator continues to be minimax
rate-optimal approaches 0 as we assume more smoothness of the true density.

2 Problem setup and notation

Let X = [−π, π]D and let µ denote the Lebesgue measure on X . For D-tuples z ∈ ZD of integers,
let ψz ∈ L2 = L2(X ) 1 defined by ψz(x) = e−i〈z,x〉 for all x ∈ X denote the zth element of the L2-
orthonormal Fourier basis, and, for f ∈ L2, let f̃(z) := 〈ψz, f〉L2 =

∫
X ψz(x)f(x) dµ(x) denote

the zth Fourier coefficient of f . 2 For any s ∈ [0,∞), define the Sobolev space Hs = Hs(X ) ⊆ L2

of order s on X by 3

Hs =

{
f ∈ L2 :

∑
z∈ZD

z2s
∣∣∣f̃(z)

∣∣∣2 <∞} . (1)

Fix a known s ∈ [0,∞) and a unknown probability density functions p, q ∈ Hs, and suppose we
have n IID samples X1, ..., Xn ∼ p and Y1, . . . , Yn ∼ q from each of p and q. We are interested in
estimating the inner product

〈p, q〉Hs :=
∑
z∈ZD

z2sp̃(z)q̃(z) defined for all p, q ∈ Hs. (2)

1We suppress dependence on X ; all function spaces are over X except as discussed in Section 2.1.
2Here, 〈·, ·〉 denotes the dot product on RD . For a complex number c = a + bi, c = a − bi denotes the

complex conjugate of c, and |c| =
√
cc =

√
a2 + b2 denotes the modulus of c.

3When D > 1, z2s =
∏D

j=1 z
2s
j . For z < 0, z2s should be read as (z2)s, so that z2s ∈ R even when

2s /∈ Z. In the L2 case, we use the convention that 00 = 1.
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Estimating the inner product gives an estimate for the (squared) induced norm and distance, since 4

‖p‖2Hs :=
∑
z∈ZD

z2s |p̃(z)|2 = 〈p, p〉Hs and ‖p− q‖2Hs = ‖p‖2Hs − 2〈p, q〉Hs + ‖q‖2Hs . (3)

Since our theoretical results assume the samples from p and q are independent, when estimating
‖p‖2Hs , we split the sample from p in half to compute two independent estimates of p̃, although this
may not be optimal in practice.

For a more classical intuition, we note that, in the case D = 1 and s ∈ {0, 1, 2, . . . }, (via Parseval’s
identity and the identity f̃ (s)(z) = (iz)sf̃(z)), that one can show the following: Hs includes the
subspace of L2 functions with at least s derivatives in L2 and, if f (s) denotes the sth derivative of f

‖f‖2Hs = 2π

∫
X

(
f (s)(x)

)2
dx = 2π

∥∥∥f (s)∥∥∥2
L2
, ∀f ∈ Hs. (4)

In particular, when s = 0, Hs = L2, ‖ · ‖Hs = ‖ · ‖L2 , and 〈·, ·〉Hs = 〈·, ·〉L2 . As we describe in
the supplement, equation (4) and our results generalizes trivially to weak derivatives, as well as to
non-integer s ∈ [0,∞) via a notion of fractional derivative.

2.1 Unbounded domains

A notable restriction above is that p and q are supported in X := [−π, π]D. In fact, our estimators
and tests are well-defined and valid for densities supported on arbitrary subsets of RD. In this
case, they act on the 2π-periodic summation p2π : [−π, π]D → [0,∞] defined for x ∈ X by
p2π(x) :=

∑
z∈ZD p(x+ 2πz), which is itself a probability density function on X . For example, the

estimator for ‖p‖Hs will instead estimate ‖p2π‖Hs , and the two-sample test for distributions p and q
will attempt to distinguish p2π from q2π . In most cases, this is not problematic; for example, for most
realistic probability densities, p and p2π have similar orders of smoothness, and p2π = q2π if and
only if p = q. However, there are (meagre) sets of exceptions; for example, if q is a translation of
p by exactly 2π, then p2π = q2π, and one can craft a highly discontinuous function p such that p2π
is uniform on X . [Zygmund, 2002] These exceptions make it difficult to extend theoretical results
to densities with arbitrary support, but in practice, they are fixed simply by randomly rescaling the
data (similar to the approach of Chwialkowski et al. [2015]). If the densities have (known) bounded
support, they can simply be shifted and scaled to be supported on X .

3 Related work

There is a large body of work on estimating nonlinear functionals of probability densities, with
various generalizations in terms of the class of functionals considered. Table 1 gives a subset of such
work, for functionals related to Sobolev quantities. As shown in Section 2, the functional form we
consider is a strict generalization of L2 norms, Sobolev norms, and L2 inner products. It overlaps
with, but is neither a special case nor a generalization of the remaining functional forms in the table.

Nearly all of the above approaches compute an optimally smoothed kernel density estimate and then
perform bias corrections based on Taylor series expansions of the functional of interest. They typically
consider distributions with densities that are β-Hölder continuous and satisfy periodicity assumptions
of order β on the boundary of their support, for some constant β > 0 (see, for example, Section 4 of
Krishnamurthy et al. [2014b] for details of these assumptions). The Sobolev class we consider is a
strict superset of this Hölder class, permitting, for example, certain “small” discontinuities. In this
regard, our results are slightly more general than most of these prior works.

Finally, there is much recent work on estimating entropies, divergences, and mutual informations,
using methods based on kernel density estimates [Singh and Póczos, 2014a,b, Moon et al., 2016,
Krishnamurthy et al., 2014b,a, Kandasamy et al., 2015] or k-nearest neighbor statistics [Leonenko

4‖p‖Hs is pseudonorm on Hs because it fails to distinguish functions identical almost everywhere up to
additive constants; a combination of ‖p‖L2 and ‖p‖Hs is used when a proper norm is needed. However, since
probability densities integrate to 1, ‖ ·−·‖Hs is a proper metric on the subset of (almost-everywhere equivalence
classes of) probability density functions in Hs, which is important for two-sample testing (see Section 9). For
simplicity, we use the terms “norm”, “inner product”, and “distance” for the remainder of the paper.
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Functional Name Functional Form References

L2 norms ‖p‖2L2 =
∫

(p(x))
2
dx Schweder [1975], Giné and

Nickl [2008]

(Integer) Sobolev norms ‖p‖2Hk =
∫ (
p(k)(x)

)2
dx Bickel and Ritov [1988]

Density functionals
∫
ϕ(x, p(x)) dx Laurent [1992], Laurent et al.

[1996]

Derivative functionals
∫
ϕ(x, p(x), p′(x), . . . , p(k)(x)) dx Birgé and Massart [1995]

L2 inner products 〈p1, p2〉L2 =
∫
p1(x)p2(x) dx Krishnamurthy et al. [2014b,a]

Multivariate functionals
∫
ϕ(x, p1(x), . . . , pk(x)) dx Singh and Póczos [2014b],

Kandasamy et al. [2015]
Table 1: Some related functional forms for which estimators for which nonparametric estimators have
been developed and analyzed. p, p1, ..., pk are unknown probability densities, from each of which we
draw n IID samples, ϕ is a known real-valued measurable function, and k is a non-negative integer.

et al., 2008, Póczos and Schneider, 2011, Moon and Hero, 2014b,a]. In contrast, our estimators are
more similar to orthogonal series density estimators, which are computationally attractive because
they require no pairwise operations between samples. However, they require quite different theoretical
analysis; unlike prior work, our estimator is constructed and analyzed entirely in the frequency domain,
and then related to the data domain via Parseval’s identity. We hope our analysis can be adapted to
analyze new, computationally efficient information theoretic estimators.

4 Motivation and construction of our estimator

For a non-negative integer parameter Zn (to be specified later), let

pn :=
∑

‖z‖∞≤Zn

p̃(z)ψz and qn :=
∑

‖z‖∞≤Zn

q̃(z)ψz where ‖z‖∞ := max
j∈{1,...,D}

zj (5)

denote the L2 projections of p and q, respectively, onto the linear subspace spanned by the L2-
orthonormal family Fn := {ψz : z ∈ ZD, |z| ≤ Zn}. Note that, since ψ̃z(y) = 0 whenever y 6= z,
the Fourier basis has the special property that it is orthogonal in 〈·, ·〉Hs as well. Hence, since
pn and qn lie in the span of Fn while p − pn and q − qn lie in the span of {ψz : z ∈ Z}\Fn,
〈p− pn, qn〉Hs = 〈pn, q − qn〉Hs = 0. Therefore,

〈p, q〉Hs = 〈pn, qn〉Hs + 〈p− pn, qn〉Hs + 〈pn, q − qn〉Hs + 〈p− pn, q − qn〉Hs
= 〈pn, qn〉Hs + 〈p− pn, q − qn〉Hs . (6)

We propose an unbiased estimate of Sn := 〈pn, qn〉Hs =
∑
‖z‖∞≤Zn z

2sp̃n(z)q̃n(z). Notice that
Fourier coefficients of p are the expectations p̃(z) = EX∼p [ψz(X)]. Thus, p̂(z) := 1

n

∑n
j=1 ψz(Xj)

and q̂(z) := 1
n

∑n
j=1 ψz(Yj) are independent unbiased estimates of p̃ and q̃, respectively. Since Sn

is bilinear in p̃ and q̃, the plug-in estimator for Sn is unbiased. That is, our estimator for 〈p, q〉Hs is

Ŝn :=
∑

‖z‖∞≤Zn

z2sp̂(z)q̂(z). (7)

5 Finite sample bounds

Here, we present our main theoretical results, bounding the bias, variance, and mean squared error of
our estimator for finite n.

By construction, our estimator satisfies

E
[
Ŝn

]
=

∑
‖z‖∞≤Zn

z2s E [p̂(z)]E [q̂(z)] =
∑

‖z‖∞≤Zn

z2sp̃n(z)q̃n(z) = Sn.
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Thus, via (6) and Cauchy-Schwarz, the bias of the estimator Ŝn satisfies∣∣∣E [Ŝn]− 〈p, q〉Hs∣∣∣ = |〈p− pn, q − qn〉Hs | ≤
√
‖p− pn‖2Hs ‖q − qn‖

2
Hs . (8)

‖p− pn‖Hs is the error of approximating p by an order-Zn trigonometric polynomial, a classic
problem in approximation theory, for which Theorem 2.2 of Kreiss and Oliger [1979] shows:

if p ∈ Hs′ for some s′ > s, then ‖p− pn‖Hs ≤ ‖p‖Hs′Z
s−s′
n . (9)

In combination with (8), this implies the following bound on the bias of our estimator:

Theorem 1. (Bias bound) If p, q ∈ Hs′ for some s′ > s, then, for CB := ‖p‖Hs′‖q‖Hs′ ,∣∣∣E [Ŝn]− 〈p, q〉Hs ∣∣∣ ≤ CBZ2(s−s′)
n (10)

Hence, the bias of Ŝn decays polynomially in Zn, with a power depending on the “extra” s′ − s
orders of smoothness available. On the other hand, as we increase Zn, the number of frequencies at
which we estimate p̂ increases, suggesting that the variance of the estimator will increase with Zn.
Indeed, this is expressed in the following bound on the variance of the estimator.

Theorem 2. (Variance bound) If p, q ∈ Hs′ for some s′ ≥ s, then

V
[
Ŝn

]
≤ 2C1

Z4s+D
n

n2
+
C2

n
, (11)

where C1 and C2 are the constants (in n)

C1 :=
2DΓ(4s+ 1)

Γ(4s+D + 1)
‖p‖L2‖q‖L2 (12)

and C2 := (‖p‖Hs + ‖q‖Hs) ‖p‖W 2s,4‖q‖W 2s,4 + ‖p‖4Hs‖q‖4Hs .

The proof of Theorem 2 is perhaps the most significant theoretical contribution of this work. Due to
space constraints, the proof is given in the appendix. Combining Theorems 1 and 2 gives a bound on
the mean squared error (MSE) of Ŝn via the usual decomposition into squared bias and variance:

Corollary 3. (Mean squared error bound) If p, q ∈ Hs′ for some s′ > s, then

E
[(
Ŝn − 〈p, q〉Hs

)2]
≤ C2

BZ
4(s−s′)
n + 2C1

Z4s+D
n

n2
+
C2

n
. (13)

If, furthermore, we choose Zn � n
2

4s′+D (optimizing the rate in inequality 13), then

E
[(
Ŝn − 〈p, q〉H2

)2]
� nmax

{
8(s−s′)
4s′+D ,−1

}
. (14)

Corollary 3 recovers the phenomenon discovered by Bickel and Ritov [1988]: when s′ ≥ 2s+ D
4 , the

minimax optimal MSE decays at the “semi-parametric” n−1 rate, whereas, when s′ ∈
(
s, 2s+ D

4

)
,

the MSE decays at a slower rate. Also, the estimator isL2-consistent ifZn →∞ andZnn−
2

4s+D → 0
as n→∞. This is useful in practice, since s is known but s′ is not.

6 Asymptotic distributions

In this section, we derive the asymptotic distributions of our estimator in two cases: (1) the inner
product estimator and (2) the distance estimator in the case p = q. These results provide confidence
intervals and two-sample tests without computationally intensive resampling. While (1) is more
general in that it can be used with (3) to bound the asymptotic distributions of the norm and distance
estimators, (2) provides a more precise result leading to a more computationally and statistically
efficient two-sample test. Proofs are given in the supplementary material.

Theorem 4 shows that our estimator has a normal asymptotic distribution, assuming Zn →∞ slowly
enough as n→∞, and also gives a consistent estimator for its asymptotic variance. From this, one
can easily estimate asymptotic confidence intervals for inner products, and hence also for norms.
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Theorem 4. (Asymptotic normality) Suppose that, for some s′ > 2s + D
4 , p, q ∈ Hs′ , and

suppose Znn
1

4(s−s′) → ∞ and Znn−
1

4s+D → 0 as n → ∞. Then, Ŝn is asymptotically normal
with mean 〈p, q〉Hs . In particular, for j ∈ {1, . . . , n} and z ∈ ZD with ‖z‖∞ ≤ Zn, define
Wj,z := zseizXj and Vj,z := zseizYj , so that Wj and Vj are column vectors in R(2Zn)

D

. Let
W := 1

n

∑n
j=1Wj , V := 1

n

∑n
j=1 Vj ∈ R(2Zn)

D

,

ΣW :=
1

n

n∑
j=1

(Wj−W )(Wj−W )T , and ΣV :=
1

n

n∑
j=1

(Vj−V )(Vj−V )T ∈ R(2Zn)
D×(2Zn)D

denote the empirical means and covariances of W and V , respectively. Then, for

σ̂2
n :=

[
V
W

]T [
ΣW 0

0 ΣV

] [
V
W

]
, we have

√
n

(
Ŝn − 〈p, q〉Hs

σ̂n

)
D→ N (0, 1),

where D→ denotes convergence in distribution.

Since distances can be written as a sum of three inner products (Eq. (3)), Theorem 4 might suggest
an asymptotic normal distribution for Sobolev distances. However, extending asymptotic normality
from inner products to their sum requires that the three estimates be independent, and hence that we
split data between the three estimates. This is inefficient in practice and somewhat unnatural, as we
know, for example, that distances should be non-negative. For the particular case p = q (as in the
null hypothesis of two-sample testing), the following theorem 5 provides a more precise asymptotic
(χ2) distribution of our Sobolev distance estimator, after an extra decorrelation step. This gives, for
example, a more powerful two-sample test statistic (see Section 9 for details).

Theorem 5. (Asymptotic null distribution) Suppose that, for some s′ > 2s+ D
4 , p, q ∈ Hs′ , and

suppose Znn
1

4(s−s′) → ∞ and Znn−
1

4s+D → 0 as n → ∞. For j ∈ {1, . . . , n} and z ∈ ZD with
‖z‖∞ ≤ Zn, define Wj,z := zs

(
e−izXj − e−izYj

)
, so that Wj is a column vector in R(2Zn)

D

. Let

W :=
1

n

n∑
j=1

Wj ∈ R(2Zn)
D

and Σ :=
1

n

n∑
j=1

(
Wj −W

) (
Wj −W

)T ∈ R(2Zn)
D×(2Zn)D

denote the empirical mean and covariance of W , and define T := nW
T

Σ−1W . Then, if p = q, then

Qχ2((2Zn)D)(T )
D→ Uniform([0, 1]) as n→∞,

where Qχ2(d) : [0,∞) → [0, 1] denotes the quantile function (inverse CDF) of the χ2 distribution
χ2(d) with d degrees of freedom.

Let M̂ denote our estimator for ‖p− q‖Hs (i.e., plugging Ŝn into (3)). While Theorem 5 immediately
provides a valid two-sample test of desired level, it is not immediately clear how this relates to
M̂ , nor is there any suggestion of why the test statistic ought to be a good (i.e., consistent) one.
Some intuition is as follows. Notice that M̂ = W

T
W . Since, by the central limit theorem, W

has a normal asymptotic distribution, if the components of W were uncorrelated (and Zn were
fixed), we would expect nM̂ to have an asymptotic χ2 distribution with (2Zn)D degrees of freedom.
However, because we use the same data to compute each component of M̂ , they are not typically
uncorrelated, and so the asymptotic distribution of M̂ is difficult to derive. This motivates the statistic

T =

(√
Σ−1W W

)T √
Σ−1W W , since the components of

√
Σ−1W W are (asymptotically) uncorrelated.

7 Parameter selection and statistical/computational trade-off

Here, we give statistical and computational considerations for choosing the smoothing parameter Zn.
5This result is closely related to Proposition 4 of Chwialkowski et al. [2015]. However, in their situation,

s = 0 and the set of test frequencies is fixed as n→∞, whereas our set is increasing.
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Statistical perspective: In practice, of course, we do not typically know s′, so we cannot simply
set Zn � n

2
4s′+D , as suggested by the mean squared error bound (14). Fortunately (at least for ease

of parameter selection), when s′ ≥ 2s+ D
4 , the dominant term of (14) is C2/n for Zn � n−

1
4s+D .

Hence if we are willing to assume that the density has at least 2s+ D
4 orders of smoothness (which

may be a mild assumption in practice), then we achieve statistical optimality (in rate) by setting
Zn � n−

1
4s+D , which depends only on known parameters. On the other hand, the estimator can

continue to benefit from additional smoothness computationally.

Computational perspective One attractive property of the estimator discussed is its computational
simplicity and efficiency with respect to n, in low dimensions. Most competing nonparametric
estimators, such as kernel-based or nearest-neighbor methods, either take O(n2) time or rely on
complex data structures such as k-d trees or cover trees [Ram et al., 2009] for O(2Dn log n) time
performance. Since computing the estimator takes O(nZDn ) time and O(ZDn ) memory (that is, the
cost of estimating each of (2Zn)D Fourier coefficients by an average), a statistically optimal choice

of Zn gives a runtime of O
(
n

4s′+2D
4s′+D

)
. Since the estimate requires only a vector outer product,

exponentiation, and averaging, the constants involved are small and computations parallelize trivially
over frequencies and data.

Under severe computational constraints, for very large data sets, or if D is large relative to s′, we can
reduce Zn to trade off statistical for computational efficiency. For example, if we want an estimator
with runtime O(n1+θ) and space requirement O(nθ) for some θ ∈

(
0, 2D

4s′+D

)
, setting Zn � nθ/D

still gives a consistent estimator, with mean squared error of the order O
(
nmax{ 4θ(s−s′)

D ,−1}
)

.

Kernel- or nearest-neighbor-based methods, including nearly all of the methods described in Section
3, tend to require storing previously observed data, resulting in O(n) space requirements. In
contrast, orthogonal basis estimation requires storing only O(ZDn ) estimated Fourier coefficients.
The estimated coefficients can be incrementally updated with each new data point, which may make
the estimator or close approximations feasible in streaming settings.

8 Experimental results

In this section, we use synthesized data to demonstrate the effectiveness of our methods.
A MATLAB implementation of our estimators, two-sample tests, and experiments is avail-
able at https://github.com/sss1/SobolevEstimation. For all experiments, we use
10, 100, 1000, 10000, 100000 samples for estimation.

We first test our estimators on 1D L2 distances. Figure 1a shows estimated distance between N (0, 1)
and N (1, 1); Figure 1b shows estimated distance between N (0, 1) and N (0, 4); Figure 1c shows
estimated distance between Unif [0, 1] and Unif[0.5, 1.5]; Figure 1d shows estimated distance between
[0, 1] and a triangular distribution whose density is highest at x = 0.5. Error bars indicate asymptotic
95% confidence intervals based on Theorem 4. These experiments suggest 105 samples is sufficient
to estimate L2 distances with high confidence. Note that we need fewer samples to estimate Sobolev
quantities of Gaussians than, say, of uniform distributions, consistent with our theory, since (infinitely
differentiable) Gaussians are smoothier than (discontinuous) uniform distributions.

Next, we test our estimators on L2 distances of multivariate distributions. Figure 2a shows estimated
distance between N ([0, 0, 0] , I) and N ([1, 1, 1] , I); Figure 2b shows estimated distance between
N ([0, 0, 0] , I) and N ([0, 0, 0] , 4I). Again, these experiments show that our estimators can also
handle multivariate distributions.

Lastly, we test our estimators for Hs norms. Figure 2c shows estimated H0 norm of N (0, 1) and
Figure 2d shows H1 norm of N (0, 1). Notice that we need fewer samples to estimate H0 than H1,
which verifies our theory.
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9 Connections to two-sample testing

Here, we discuss the use of our estimator in two-sample testing. There is a large literature on
nonparametric two-sample testing, but we discuss only some recent approaches with theoretical
connections to ours.

Let M̂ denote our estimate of the Sobolev distance, consisting of plugging Ŝ into equation (3).
Since ‖ · − · ‖Hs is a metric on the space of probability density functions in Hs, computing M̂
leads naturally to a two-sample test on this space. Theorem 5 suggests an asymptotic test, which
is computationally preferable to a permutation test. In particular, for a desired Type I error rate
α ∈ (0, 1) our test rejects the null hypothesis p = q if and only if Qχ2(2ZDn )(T ) < α.

When s = 0, this approach is closely related to several two-sample tests in the literature based on
comparing empirical characteristic functions (CFs). Originally, these tests [Heathcote, 1972, Epps and
Singleton, 1986] computed the same statistic T with a fixed number of random RD-valued frequencies
instead of deterministic ZD-valued frequencies. This test runs in linear time, but is not generally
consistent, since the two CFs need not differ almost everywhere. Recently, Chwialkowski et al. [2015]
suggested using smoothed CFs, i.e., the convolution of the CF with a universal smoothing kernel k.
This is computationally easy (due to the convolution theorem) and, when p 6= q, (p̃∗k)(z) 6= (q̃∗k)(z)
for almost all z ∈ RD, reducing the need for carefully choosing test frequencies. Furthermore, this
test is almost-surely consistent under very general alternatives. However, it is not clear what sort of
assumptions would allow finite sample analysis of the power of their test. Indeed, the convergence
as n → ∞ can be arbitrarily slow, depending on the random test frequencies used. Our analysis
instead uses the assumption p, q ∈ Hs′ to ensure that small, ZD-valued frequencies contain most of
the power of p̃. 6

These fixed-frequency approaches can be thought of as the extreme point θ = 0 of the compu-
tational/statistical trade-off described in section 7: they are computable in linear time and (with
smoothing) are strongly consistent, but do not satisfy finite-sample bounds under general conditions.

At the other extreme (θ = 1) are MMD-based tests of Gretton et al. [2006, 2012], which utilize the
entire spectrum p̃. These tests are statistically powerful and have strong guarantees for densities
in an RKHS, but have O(n2) computational complexity. 7 The computational/statistical trade-off
discussed in Section 7 can be thought of as an interpolation (controlled by θ) of these approaches,
with runtime in the case θ = 1 approaching quadratic for large D and small s′.

6Note that smooth CFs can be used in our test by replacing p̂(z) with 1
n

∑n
j=1 e

−izXjk(x), where k is the
inverse Fourier transform of a characteristic kernel. However, smoothing seems less desirable under Sobolev
assumptions, as it spreads the power of the CF away from small ZD-valued frequencies where our test focuses.

7Fast MMD approximations have been proposed, including the Block MMD, [Zaremba et al., 2013] Fast-
MMD, [Zhao and Meng, 2015] and

√
n sub-sampled MMD, but these lack the statistical guarantees of MMD.
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10 Conclusions and future work

In this paper, we proposed nonparametric estimators for Sobolev inner products, norms and distances
of probability densities, for which we derived finite-sample bounds and asymptotic distributions.

A natural follow-up question to our work is whether estimating smoothness of a density can guide the
choice of smoothing parameters in nonparametric estimation. For some problems, such as estimating
functionals of a density, this may be especially useful, since no error metric is typically available
for cross-validation. Even when cross-validation is an option, as in density estimation or regression,
estimating smoothness may be faster, or may suggest an appropriate range of parameter values.

A Proof of Variance Bound

Theorem 7. (Variance Bound) If p, q ∈ Hs′ for some s′ > s, then

V
[
Ŝn

]
≤ 2C1

Z4s+D
n

n2
+
C2

n
, (15)

where C1 and C2 are the constants (in n)

C1 :=
2DΓ(4s+ 1)

Γ(4s+D + 1)
‖p‖L2‖q‖L2

and C2 := (‖p‖Hs + ‖q‖Hs) ‖p‖W 2s,4‖q‖W 2s,4 + ‖p‖4Hs‖q‖4Hs .

Proof: We will use the Efron-Stein inequality [Efron and Stein, 1981] to bound the variance of Ŝn.
To do this, suppose we were to draw n additional IID samples X ′1, . . . , X

′
n ∼ p, and define, for all

`, j ∈ {1, . . . , n},

X
(`)
j =

{
X ′j if j = `
Xj else .

Let

Ŝ(`)
n :=

1

n2

∑
|z|≤Zn

z2s
n∑
j=1

n∑
k=1

ψz(X
(`)
j )ψz(Yk)

denote our estimate when we replaceX` byX ′`. Noting the symmetry of Ŝn in p and q, the Efron-Stein
inequality tells us that

V
[
Ŝn

]
≤

n∑
`=1

E
[∣∣∣Ŝn − Ŝ(`)

n

∣∣∣2] , (16)

where the expectation above (and elsewhere in this section) is taken over all 3n samples
X1, . . . , X2n, X

′
1, . . . , X

′
2n, Y1, . . . , Yn. Expanding the difference in (16), note that any terms with

j 6= ` cancel, so that 8

Ŝn − Ŝ(`)
n =

1

n2

∑
|z|≤Zn

z2s
n∑
j=1

n∑
k=1

ψz(Xj)ψz(Yk)− ψz(X(`)
j )ψz(Yk)

=
1

n2

∑
|z|≤Zn

z2s(ψz(X`)− ψz(X ′`))
n∑
k=1

ψ−z(Yk),

and so∣∣∣Ŝn − Ŝ(`)
n

∣∣∣2
=

1

n4

∑
|y|,|z|≤Zn

(yz)2s(ψy(X`)− ψy(X ′`))(ψ−z(X`)− ψ−z(X ′`))

(
n∑
k=1

ψ−y(Yk)

)(
n∑
k=1

ψz(Yk)

)
.

(17)

8It is useful here to note that ψz(x) = ψ−z(x) and that ψyψz = ψy+z .
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Since X` and X ′` are IID,

E [(ψy(X`)− ψy(X ′`))(ψ−z(X`)− ψ−z(X ′`))] = 2

(
E

X∼p
[ψy−z(X)]− E

X∼p
[ψy(X)] E

X∼p
[ψ−z(X)]

)
= 2 (p̃(y − z)− p̃(y)p̃(−z)) ,

and, since Y1, . . . , Yn are IID,

E

[(
n∑
k=1

ψ−y(Yk)

)(
n∑
k=1

ψz(Yk)

)]
= n E

Y∼q
[ψz−y(Y )] + n(n− 1) E

Y∼q
[ψ−y(Y )] E

Y∼q
[ψz(Y )]

= nq̃(z − y) + n(n− 1)q̃(−y)q̃(z).

In view of these two equalities, taking the expectation of (17) and using the fact that X` and X ′` are
independent of Xn+1, . . . , X2n, (17) reduces:

E
[∣∣∣Ŝn − Ŝ(`)

n

∣∣∣2] =
2

n3

∑
|y|,|z|≤Zn

(yz)2s (p̃(y − z)− p̃(y)p̃(−z)) (q̃(z − y) + (n− 1)q̃(−y)q̃(z))

=
2

n3

∑
|y|,|z|≤Zn

(yz)2s (p̃(y − z)q̃(z − y)− p̃(y)p̃(−z)q̃(z − y)

+(n− 1)p̃(y − z)q̃(−y)q̃(z)− (n− 1)p̃(y)p̃(−z)q̃(−y)q̃(z)) . (18)

We now need to bound following terms in magnitude:∑
|y|,|z|≤Zn

(yz)2sp̃(y − z)q̃(z − y), (19)

∑
|y|,|z|≤Zn

(yz)2sp̃(y − z)q̃(−y)q̃(z), (20)

and
∑

|y|,|z|≤Zn

(yz)2sp̃(y)p̃(−z)q̃(−y)q̃(z) (21)

(the second term in (18) is bounded identically to the third term).

To bound (19), we perform a change of variables, replacing y by k = y − z:

∑
|y|,|z|≤Zn

(yz)2sp̃(y − z)q̃(z − y) =
∑
|k|≤2Zn

p̃(k)q̃(−k)

D∑
j=1

min{Zn,kj+Zn}∑
zj=max{−Zn,kj−Zn}

((k − z)z)2s

(22)

≤ 2DΓ(4s+ 1)

Γ(4s+D + 1)
Z4s+D
n

∑
|k|≤2Zn

p̃(k)q̃(−k) (23)

≤ C1Z
4s+D
n , (24)

where C1 is the constant (in n and Zn)

C1 :=
2DΓ(4s+ 1)

Γ(4s+D + 1)
‖p‖2‖q‖2. (25)

(22) and (23) follow from observing that

D∑
j=1

min{Zn,kj+Zn}∑
zj=max{−Zn,kj−Zn}

((kj − zj)zj)2s = (f ∗ f)(kj),

where f(z) := z2s1{|z|≤Zn},∀z ∈ ZD and ∗ denotes convolution (over ZD). This convolution is
clearly maximized when k = 0, in which case

(f ∗ f)(k) =
∑
|z|≤Zn

z4s ≤

(∫
B∞(0,Zn)

z4s dz

)
=

2DΓ(4s+ 1)

Γ(4s+D + 1)
Z4s+D
n ,

10



where we upper bounded the series by an integral over

B∞(0, Zn) := {z ∈ RD : ‖z‖∞ = max{|z1|, ..., |zD|} ≤ Zn}.

(24) then follows via Cauchy-Schwarz.

Bounding (20) for general s is more involved and requires rigorously defining more elaborate notions
from the theory distributions, but the basic idea is as follows:∑
|y|,|z|≤Zn

(yz)2sp̃(y − z)q̃(−y)q̃(z) =
∑
|y|≤Zn

y2sq̃(−y)
∑
|z|≤Zn

z2sp̃(y − z)q̃(z)

=
∑

|y|,|z|≤Zn

y2sq̃(−y)
˜(
p
(s)
n q

(s)
n

)
(y)

≤

√√√√ ∑
|y|≤Zn

y2s |q̃(y)|2
∑
|y|≤Zn

y2s
(

˜(p(s)q(s))(y)

)2

= ‖q‖Hs‖p(s)n q(s)n ‖Hs ≤ ‖q‖Hs‖pn‖W 2s,4‖qn‖W 2s,4 . (26)

Here, p(s)n and q(s)n denote s-order fractional derivatives of pn and qn, respectively, and W 2s,4 is
a Sobolev space (with associated pseudonorm ‖ · ‖W 2s,4), which can be informally thought of as
W 2s,4 :=

{
p ∈ L2 :

(
p(s)
)2 ∈ Hs

}
. The equality between the first and second lines follows from

Theorem 10, and both inequalities are simply applications of Cauchy-Schwarz. For sake of intuition,
it can be noted that the above steps are relatively elementary when s = 0. Now, it suffices to note
that, by the Rellich-Kondrachov embedding theorem [Rellich, 1930, Evans, 2010], W 2s,4 ⊆ Hs′ ,
and hence ‖pn‖W 2s,4 ≤ ‖p‖W 2s,4 <∞, as long as s′ ≥ 2s+ D

4 .

Bounding (21) is a simple application of Cauchy-Schwarz:

∑
|y|,|z|≤Zn

(yz)2sp̃(y)p̃(−z)q̃(−y)q̃(z) =

 ∑
|y|≤Zn

y2sp̃(y)q̃(−y)

 ∑
|z|≤Zn

z2sp̃(−z)q̃(z)


≤

 ∑
|z|≤Zn

z2s |p̃(z)|2
2 ∑

|z|≤Zn

z2s |q̃(z)|2
2

= ‖p‖4Hs‖q‖4Hs (27)

Plugging (24), (26), and (27) into (18) gives

E
[∣∣∣Ŝn − Ŝ(`)

n

∣∣∣2] ≤ 2C1
Z4s+D
n

n3
+
C2

n2
,

where C2 denotes the constant (in n and Zn)

C2 := (‖p‖Hs + ‖q‖Hs) ‖p‖W 2s,4‖q‖W 2s,4 + ‖p‖4Hs‖q‖4Hs . (28)

Plugging this into the Efron-Stein inequality (16) gives, by symmetry of Ŝn in X1, ..., Xn,

V
[
Ŝn

]
≤ 2C1

Z4s+D
n

n2
+
C2

n
.

B Proofs of Asymptotic Distributions

Theorem 8. Suppose that, for some s′ > 2s+ D
4 , p, q ∈ Hs′ , and suppose Znn

1
4(s−s′) →∞ and

Znn
− 1

4s+D → 0 as n→∞. Then, Ŝn is asymptotically normal with mean 〈p, q〉. In particular, for

11



j ∈ {1, . . . , n}, define the following quantities:

Wj :=



Zsne
iZnXj

...
eiXj

eiXj

...
Zsne

−iZnXj


, Vj :=



Zsne
iZnYj

...
eiYj

eiYj

...
Zsne

−iZnYj


, W :=

1

n

n∑
j=1

Wj , V :=
1

n

n∑
j=1

Vj ∈ R2Zn ,

ΣW :=
1

n

n∑
j=1

(Wj −W )(Wj −W )T , and ΣV :=
1

n

n∑
j=1

(Vj − V )(Vj − V )T ∈ R2Zn×2Zn .

Then, for

σ̂2
n :=

[
V
W

]T [
ΣW 0

0 ΣV

] [
V
W

]
,

we have
√
n

(
Ŝn − 〈p, q〉Hs

σ̂n

)
D→ N (0, 1).

Proof: By the bias bound and the assumption Z4(s−s′)
n n→∞, it suffices to show

√
n

 Ŝn − E
[
Ŝn

]
σn

 D→ N (0, 1). as n→∞. (29)

Let

p̃Zn :=


p̃(−Zn)

p̃(−Zn + 1)
...

p̃(Zn − 1)
p̃(Zn)

 , p̂Zn :=


p̂(−Zn)

p̂(−Zn + 1)
...

p̂(Zn − 1)
p̂(Zn)

 ,

q̃Zn :=


q̃(−Zn)

q̃(−Zn + 1)
...

q̃(Zn − 1)
q̃(Zn)

 , and q̂ :=


q̂(−Zn)

q̂(−Zn + 1)
...

q̂(Zn − 1)
q̂(Zn)

 .
Since p̂Zn and q̂Zn are empirical means of bounded random vectors with means p̃Zn and q̃Zn ,
respectively, by the central limit theorem, as n→∞,

√
n (p̂Zn − p̃Zn)

D→ N (0,Σp) and
√
n (q̂Zn − q̃Zn)

D→ N (0,Σq),

where

(Σp)w,z := Cov
X∼p

(ψw(X), ψz(X)) and (Σq)w,z := Cov
X∼q

(ψw(X), ψz(X)) .

Define h : R2Zn+1 × R2Zn+1 → R by h(x, y) =
∑Zn
z=−Zn z

2sxzy−z , and note that

σ2
n := (∇h (p̃Zn , q̃Zn))

′
[
Σp 0
0 Σq

]
(∇h (p̃Zn , q̃Zn)) .

(29) follows by the delta method.
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Theorem 9. Suppose that, for some s′ > 2s+ D
4 , p, q ∈ Hs′ , and suppose Znn

1
4(s−s′) →∞ and

Znn
− 1

4s+D → 0 as n→∞. For j ∈ {1, . . . , n}, define

Wj :=



Zsn
(
eiZnXj − eiZnYj

)
...

eiXj − eiYj
e−iXj − e−iYj

...
Zsn
(
e−iZnXj − e−iZnYj

)


∈ R2Zn .

Let

W :=
1

n

n∑
j=1

Wj and Σ :=
1

n

n∑
j=1

(
Wj −W

) (
Wj −W

)T
denote the empirical mean and covariance of W , and define T := nW

T
Σ−1W . Then, if p = q, then

Qχ2(2Zn)(T )
D→ Uniform([0, 1]) as n→∞,

where Qχ2(2Zn) : [0,∞)→ [0, 1] denotes the quantile function (inverse CDF) of the χ2 distribution
χ2(2Zn) with 2Zn degrees of freedom.

Proof: Since, as shown in the proof of the previous theorem, the distance estimate is a sum of squared
asymptotically normal, zero-mean random variables, this is a standard result in multivariate statistics.
See, for example, Theorem 5.2.3 of Anderson [2003].

C Generalizations: Weak and Fractional Derivatives

As mentioned in the main text, our estimator and analysis can be generalized nicely to non-integer s
using an appropriate notion of fractional derivative.

For non-negative integers s, let δ(s) denote the measure underlying of the s-order derivative operator
at 0; that is, δ(s) is the distribution such that∫

R
f(x)δ(s)(x) dx = f (s)(0),

for all test functions f ∈ Hs. Then, for all z ∈ R, the Fourier transform of δ(s) is

δ̃(z) =

∫
R
e−izxδ(s)(x) dx = (−iz)s.

Thus, we can naturally generalize the derivative operator δ(s) to general s ∈ [0,∞) as the inverse
Fourier transform of the function z 7→ (−iz)s. Generalization to differentiation at an arbitrary y ∈ R
follows from translation properties of the Fourier transform, and, in multiple dimensions, for s ∈ RD,
we can consider the inverse Fourier transform of z ∈ RD 7→

∏D
j=1(izj)

sj .

With this definition in place, we can prove the following the Convolution Theorem, which equates a
particular weighted convolution of Fourier transforms and a product of particular fractional derivatives.
Note that we will only need this result in the case that f is a trigonometric polynomial (i.e., f̃ has
finite support), because we apply it only to pn and qn. Hence, the sum below has only finitely many
non-zero terms and commutes freely with integrals.

Theorem 10. Suppose p, q ∈ L2 are trigonometric polynomials. Then, ∀s ∈ [0,∞), and y ∈ ZD,∑
z∈ZD

z2sp̃(y − z)q̃(z) = ˜(p(s)q(s))(y).

13



Proof: By linearity of the integral,∑
z∈ZD

z2sp̃(y − z)q̃(z) =
∑
z∈ZD

z2s
∫
RD

p(x1)e−i〈y−z,x1〉 dx1

∫
RD

q(x2)e−i〈z,x2〉 dx2

=

∫
RD

∫
RD

p(x1)q(x2)e−i〈y,x1〉
∑
z∈ZD

z2sei〈z,x1−x2〉 dx1 dx2

=

∫
RD

∫
RD

p(x1)q(x2)e−i〈y,x1〉δ(s)(x1 − x2) dx1 dx2

=

∫
RD

p(s)(x)q(s)(x)e−i〈y,x〉 dx = ˜(p(s)q(s))(y).
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