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Introduction
• Continuum-Armed Bandits: Optimize a smooth function f in as few queries as possible.
• Also known as blackbox, 0th-order, or gradient-free optimization.

– Applications:

* Hyperparameter tuning

* Optimizing functions with unknown/expensive gradients

* Nonconvex optimization

• We provide the first tight analyses of continuum-armed bandits across several settings.

Hölder and Besov Spaces

Definition 1 (Hölder Space). Let s ∈ [0,∞). Then, f ∈ L∞ lies in the Hölder ball Cs iff

‖f‖Cs := sup
β∈N:‖β‖1=bsc

sup
x 6=y

∣∣∣fβ(x)− fβ(y)
∣∣∣

‖x− y‖s−bsc
<∞.

For example, the case s = 1 corresponds to Lipschitz continuity.

Definition 2 (Besov Space). Let βj,k denote coefficients of a function f in a wavelet basis. Let
σ ≥ 0 and p, q ∈ [1,∞]. Then, f ∈ L2 lies in the Besov ball Bσp,q(L) iff

‖f‖Bσp,q :=

∥∥∥∥{2j(σ+D(1/2−1/p))
∥∥∥{βλ}λ∈Λj

∥∥∥
lp

}
j∈N

∥∥∥∥
lq
<∞.

The case Bs∞,∞ is equivalent to the Hölder space Cs.
The case Bσ2,2 is equivalent to the Sobolev spaceHσ.
The parameter q does not affect convergence rates, so we omit it in sequel.
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‖f‖Bσp,q � ‖f‖Cs ‖f‖Bσp,q ≈ ‖f‖Cs ‖f‖B1
2,2
<∞, ‖f‖C1 =∞

Theorem 1 (Besov Embedding [3]). Let σ ∈ (d/p,∞), p, q ∈ [1,∞]. Then, Bσp,q ⊆ Cσ−d/p.

Theorem 2 (Besov Regression [2]; Informal). Regression over Bσp,q is easier than over Cσ−d/p
(using spatially adaptive methods, e.g., thresholded wavelets [2] or adaptive splines [6]).

Intuition: If ‖f‖Bσp,q � ‖f‖Cs, focus on estimating where f is non-smooth.

Simple and Cumulative Regrets
Simple Regret Cumulative Regret

RS(X̂, f ) := supx∈X f (x)− f (X̂T ) RC(X̂, f ) :=
∑T
n=1 supx∈X f (x)− f (X̂n)

MS(F) := infx̂,Z supf∈F RS(x̂T , f ) MC(F) := infx̂,Z supf∈F RC(X̂T , f ).

Minimax Rates for Noiseless Case

Theorem 3 (Minimax Rates, Noiseless Case). Suppose we can query f exactly. For σ > d/p,

MS
(
Bσp,q

)
�MS

(
Cσ−d/p

)
� T 1/p−σ/d,

and

MC
(
Bσp,q

)
�MC

(
Cσ−d/p

)
� T 1+1/p−σ/d.

Proof Ideas:
Upper Bound: Follows from Besov Embedding and existing results for Hölder spaces [5].
Lower Bound: Use wavelet basis to construct a large family Θ of bump functions with disjoint
supports. Show that, for any algorithm A, there exists f ∈ Θ such that, with high probability, A
fails to find the support of f within n samples.

Minimax Rates for Noisy Case

Theorem 4 (Minimax Rates, Noisy Case). Suppose we can query f subject to IID additive
sub-Gaussian noise with variance proxy η2. For σ > d/p,

MS
(
Bσp,q

)
�MS

(
Cσ−d/p

)
� max


η2 log T

η2

T


σ−d/p

2(σ−d/p)+d

, T 1/p−σ/d

 ,

and

MC
(
Bσp,q

)
�MC

(
Cσ−d/p

)
� max

T d+σ−d/p
2(σ−d/p)+d

(
η2 log

T

η2

) σ−d/p
2(σ−d/p)+d

, T 1+1/p−σ/d

 .

Proof Ideas:
Upper Bound: Follows from Besov Embedding and existing results for Hölder spaces [1, 4].
Lower Bound: Consider same family Θ from Theorem 3. Bound the maximum possible infor-
mation gain at any possible step of the algorithm. Apply Fano’s Lemma to lower bound error
probability of identifying the true f .

Visualization of Rates
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Phase diagram of minimax simple regret rates in the noisy case, as a function of σ and 1/p, in
the case d = 1. Dashed lines indicate Hölder and Sobolev special cases. Contours (level sets of
σ − d/p) show the relationship between Besov spaces and the embedding Hölder space.

1 Conclusions
1. First matching upper and lower bounds across all Besov spaces.

2. Spatially adaptive methods do not improve convergence rates for continuum-armed bandits.

3. When analyzing algorithms for continuum-armed bandits, it suffices to consider Hölder spaces,
in which other spaces can simply be embedded.

4. In the Hölder case, our lower bounds improve existing lower bounds by polylog factors.

5. In the Sobolev case, our results improve existing results by polynomial factors and disprove a
conjecture by Scarlett et al. [7].
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