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Introduction
• Selective sustained attention (SSA): the ability to maintain attention exclusively to one object

or task for a period of time [1, 2]

– important cognitive process that develops through childhood

• TrackIt is a recent visual object-tracking task for measuring SSA in young children. [3, 4, 5].

• Collecting eye-tracking data from children performing TrackIt creates unique opportunity for
fine-grained measurement of SSA, but unclear how to analyze this data.

• We recently proposed a hidden Markov model (HMM) based eye-tracking analysis method for
analyzing eye-tracking data collected during TrackIt [6].

• Current study used data from 3- to 6-year old children performing TrackIt to...

1) validate this HMM method by comparing with human hand-coding (labeling).
– human hand-coding has historically been used, but is extremely time- and labor-intensive

2) explore potential uses of this HMM analysis for providing nuanced measures of SSA.

TrackIt
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Figure 1: Example TrackIt trial (endogenous condition, 4 distractors). Target (grey circle) is circled before trial.

Hidden Markov Model (HMM)

• We know positions of participant’s gaze and
all objects on the screen.

• Single frame data is insufficient to infer which
object is being tracked because:

(a) objects can overlap as they move
(b) eye-tracking (esp. in children) is noisy

• HMM aggregates data across time to infer
which object participant is tracking
• Two main modeling assumptions:

– At each timepoint, gaze is Gaussian around
object being tracked

– Between timepoints, stay on same object
with high probability
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Object Collisions

Unlike models that consider data at each time point independently, an HMM can 

handle complex scenarios such as object collisions

Figure 2: Example of two objects colliding
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Figure 3: HMM (left) & gaze distribution (right)

Validating the HMM by Comparing with Human Coding
• Downsampled eye-tracking data from 60Hz to 10Hz

• Two human coders classified each gaze point as one of:

{“Object 0”, “Object 1”, ..., “Object 6”, “Off Screen”, “Off Task”}.

•>500K judgments took >50 human hours

Data
• 50 typically-developing children, ages 3.5-6 years

• Eye-tracking collected at 60Hz; downsampled to 10Hz

• 11 trials (1 initial practice), in each of 2 conditions, “Endogenous” and “Exogenous” (distinc-
tion not relevant to current study)

Results
• Compared HMM to “Naive” model which simply assumes participant is attending to the object

closest to their gaze

• Measured accuracy (agreement with human coder) of

– Frame classification (which object is the participant tracking?)

* HMM accuracy comparable with human coding reliability (up to 85% accuracy)

* Naive model accuracy ≈ 66%

– Switch detection (when does participant switch objects?)

* For attention research, it is important to accurately identify when participant’s attention
switches from one object to another

* Allowed 200ms window between detected and true switches
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Figure 4: Accuracy (prop. frames agreeing with hand-
coding) for HMM (as function of σ) and Naive models,
as well as joint proportion of inter-rater agreement.
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Figure 5: Precision, Recall, Matthews’ correlation co-
efficient (MCC), and F1 score for attentional switch
prediction, by HMM, naive model, and human coders.

Human performance was computed using each coder as ground truth for the other, and then averaging over
coders, and is plotted with (dashed white) and without (dashed black) frames either coder coded as “Off Task”.

• For reasonable σ, HMM performs much better under balanced metrics (MCC and F1
score)

• For example, naive model exhibits high recall, but very low precision

– classifies over 27% of frames as switches (≈ 2.7 switches/second)

Sustained Attention in Children
• Not obvious how best translate rich HMM output into measure of attention
• We explore 2 HMM-based attentional measures:

– Total proportion of time on target (“PropT”)
– Decrement over trial time (10-20 s)
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Figure 6: Linear regression of Behavioral Performance
and HMM PropT both improve strongly with age.

Measure Condition βage R2 95% CI
Behavior Exo. 25.8 0.40 (15.7, 35.9)
Behavior Endo. 20.1 0.28 (9.9, 30.3)
HMM Exo. 18.4 0.39 (11.1, 25.7)
HMM Endo. 14.1 0.24 (6.1, 22.0)

Table 1: Regression of performance measures over age.
All βage coefficients were significantly positive accord-
ing to a two-sided t-test for the null hypothesis βage = 0
(ps< 10−3).
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Figure 7: Decrement over trial time (slope) decreases with age.

Conclusions
• HMM classifies TrackIt eye-tracking data with near-human accuracy and temporal precision.
• Potential to

– Eliminate need for hundreds of hours of manual coding of eye-tracking data in dynamic vi-
sual scenes

– Accelerate rate of eye-tracking research
– Enable studies that were previously constrained by data annotation

• May help to allow HMM to abstain from classifying difficult “Off-Task” frames
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