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Introduction

C g e L : : : 11D
e Nonparametric distribution estimation: Given n IID samples Xi.,, = X1, ..., X;, ~ P from

an unknown distribution P, we want to estimate P.
— Important sub-routine of many statistical methods
— Usually analyzed in terms of £ loss
% Severe curse of dimensionality
* We provide unified minimax-optimal estimation rates under large family of losses called
Integral Probability Metrics (IPMs), for many function classes (Sobolev, Besov, RKHS).
— Includes most common metrics on probability distributions
— Implicitly used in Generative Adversarial Networks (GANSs)
x Allows us to derive statistical guarantees for GANSs
— Reduced curse of dimensionality

Integral Probability Metrics (IPMs)

Definition 1 (IPM). Let ‘P be a class of probability distributions on a sample space X, and F a
class of (bounded) functions on X. Then, the metric pr : P x P — |0, 00| on P is defined by

pr(P,Q)=sup | E [f(X)]—- E [f(X)]].
feF | X~P X~Q

Definition 2 (Besov Ball). Let [ .k denote coefficients of a function f in a wavelet basis indexed
by j € N,k € [2)]. For parameters o > 0, p,q € [1,00], f € L? lies in the Besov ball By, iff

< 1.
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The parameter q affects convergence rates only by logarithmic factors, so we omit it in sequel.

Examples of IPMs
Distance F
LP (including Total Variation/ﬁl) Bg/, with p’ = %

Wasserstein (“‘earth-mover”) BéO (1-Lipschitz class)

Kolmogorov-Smirnov Bll (total variation < 1)
Max. mean discrepancy (MMD) | RKHS ball
GAN Discriminator parameterized by neural network

F=wb=(1) (Wasserstein Metric)
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Figure 1: Examples of probability distributions P and () and corresponding discriminator functions f*. In (a), P and
() are Dirac masses at +1 and —1, resp., and F is the 1-Lipschitz class, so that pr is the Wasserstein metric. In (b),
P and () are standard Gaussian and Laplace distributions, resp., and F is a ball in an RKHS with a Gaussian kernel.

Minimax Rates for General Estimators

Theorem 1. Suppose o, > D /py, pél > pg. Then, up to polylog factors in n,

o . ogtoy _O'g—f-O'd—l—D—D/pg—D/pél 1
M (Bpgg,ng) =1inf sup FE P o (p, D(X1n))| <X n 290 4+ n 200+D=2D[pg 1 2.
p 99 Xl:n Pd
pEB,),

Moreover; this rate is achieved by the wavelet thresholding estimator of Donoho et al. [1].

Minimax Rates for Linear Estimators

Definition 3 (Linear Estimator). A distribution estimate P is said to be linear if there exist mea-
sures T;(X;, -) such that for all measurable A,

n

P(A) =) Ti(X;, A).

1=1

Examples: empirical distribution, kernel density estimate, or orthogonal series estimate.
Theorem 2. Suppose r > o4 > D /py. Then, up to polylog factors in n,

og+0,4 L 09+0d_D/pg+D/p£Z ]
O- . AN - o . / - =
My, (Bpgg, ng) =1inf sup FE [png (9, P(X1.0))| = 0 20D 4y 2wtD-2D/g 2Dy 4 p =3

o9 X7.
l?n PEBpy hin

where the nt is over all linear estimates of p € Fgq, and juy, is the distribution with density p.

Error Bounds for GANs

A natural statistical model for a perfectly optimized GAN as a distribution estimator 1s

P:=argmin sup E_[f(X)]— E_[f(X)], (1)
QeF, feF,X~Q X~P,

where F; and F, are function classes parametrized by the discriminator and generator, resp [2].

Theorem 3 (Convergence Rate of a Regularized GAN). Fix a Besov density class ngg with
oq > D/pg and discriminator class Bg 4. Then, for some constant C' > 0 depending only on
ng and ngg, for any desired approximation error € > 0, one can construct a GAN P of the

form (1) (with P, denoting the wavelet-thresholded distribution) whose discriminator network
N4 and generator network Ng are fully-connected ReLU networks, such that

SU_p E |:dBOd (ﬁ, P):| 5 € + n_n(Daa-dapdao-mpg)?
PeB,! v

where (D, 04,04, 0g,Pg) is the optimal exponent in Theorem 1.

* Ny and N, have (rate-optimal) depth polylog(!/e) and width, max weight, and sparsity poly(1/e).

* Proof uses recent fully-connected ReLLU network for approximating Besov functions [3].
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Figure 2: Minimax convergence rates as functions of discriminator smoothness o, and distribution function smooth-

ness o, in the case D = 4, p; = 1.2, p, = 2. Color shows exponent of minimax convergence rate (i.e., a(og4, 0,) such
that M (B]%(RP), By*(RP)) < n=2(a9%)), ignoring polylogarithmic factors.

Applications/Examples

Example 1. (Total variation/Wasserstein-type losses) If, for some o, > 0, F is a ball in B2,
we obtain generalizations of total variation (o5 = 0) and Wasserstein (04 = 1) losses. For these
losses, we always have “Dense” rate

ag—l—ad

M (ng, ng) = n 29D 4 Y2

Example 2. (Kolmogorov-Smirnov-type losses) If. for o, > 0, F is a ball in BY?, we obtain
generalizations of Kolmogorov-Smirnov loss (o5 = 0). For these losses, we have “Sparse” rate

Jg+ad—D/pg

M (ng By d) = n 2Dl 4 n~1/2

Example 3. (Maximum Mean Discrepancy) If F is a ball of radius L in a reproducing kernel
Hilbert space with translation invariant kernel K (z,y) = k(x — y) for some k € L*(X), then,

~ L||&]l g2 20
sup [E [,0]: (P, P)} < :
P Borel \/ﬁ

Example 4. (Sobolev IPMs) For o0 € N, Bg is the o-order Hilbert-Sobolev ball Bg =
2
{ fer(x): [y ( £lo) (x)) dr < oo}, where £\9) is the o'l derivative of f. For these losses,

we always have the rate

ag—I—ad

M (ng, Bgd) = n 29D 4 Y2

(note that n~1/2 dominates < t > 2d).

References

[1] David L. Donoho, Iain M Johnstone, Gérard Kerkyacharian, and Dominique Picard. Density
estimation by wavelet thresholding. The Annals of Statistics, pages S08—539, 1996.

[2] Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, and Barnabas Poc-
zos. Nonparametric density estimation under adversarial losses. In NeurIPS, 2018.

[3] Taij1 Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov
spaces: optimal rate and curse of dimensionality. arXiv preprint arXiv:1810.08033, 2018.



