Nonparametric Density Estimation under IPM Losses with Statistical Convergence Rates for Generative Adversarial Networks (GANs)

Ananya Uppal, Shashank Singh, Barnabás Póczos

Introduction

- Nonparametric distribution estimation: Given n IID samples $X_{1:n} = X_1, ..., X_n \stackrel{IID}{\sim} P$ from an unknown distribution P, we want to estimate P.
- Important sub-routine of many statistical methods
- Usually analyzed in terms of \mathcal{L}^2 loss
- * Severe curse of dimensionality
- We provide unified minimax-optimal estimation rates under large family of losses called Integral Probability Metrics (IPMs), for many function classes (Sobolev, Besov, RKHS).
- Includes most common metrics on probability distributions
- Implicitly used in Generative Adversarial Networks (GANs) * Allows us to derive statistical guarantees for GANs
- Reduced curse of dimensionality

Integral Probability Metrics (IPMs)

Definition 1 (IPM). Let \mathcal{P} be a class of probability distributions on a sample space \mathcal{X} , and \mathcal{F} a class of (bounded) functions on \mathcal{X} . Then, the metric $\rho_{\mathcal{F}} : \mathcal{P} \times \mathcal{P} \to [0, \infty]$ on \mathcal{P} is defined by

$$\rho_{\mathcal{F}}(P,Q) := \sup_{f \in \mathcal{F}} \left| \underset{X \sim P}{\mathbb{E}} \left[f(X) \right] - \underset{X \sim Q}{\mathbb{E}} \left[f(X) \right] \right|$$

Definition 2 (Besov Ball). Let $\beta_{j,k}$ denote coefficients of a function f in a wavelet basis indexed by $j \in \mathbb{N}, k \in [2^j]$. For parameters $\sigma \ge 0$, $p, q \in [1, \infty]$, $f \in \mathcal{L}^2$ lies in the Besov ball $B_{p,q}^{\sigma}$ iff

$$\|f\|_{B^{\sigma}_{p,q}} := \left\| \left\{ 2^{j(\sigma + D(1/2 - 1/p))} \left\| \{\beta_{\lambda}\}_{\lambda \in \Lambda_{j}} \right\|_{l^{p}} \right\}_{j \in \mathbb{N}} \right\|_{l^{q}} \le C_{j}^{\sigma}$$

The parameter q affects convergence rates only by logarithmic factors, so we omit it in sequel.

Examples of IPMs

Distance \mathcal{L}^p (including Total Variation/ \mathcal{L}^1) $|B_{p'}^0$, with $p' = \frac{p}{p-1}$ B^{\perp}_{∞} (1-Lipschitz class) Wasserstein ("earth-mover") B_1^1 (total variation ≤ 1) Kolmogorov-Smirnov **GAN** Discriminator

Figure 1: Examples of probability distributions P and Q and corresponding discriminator functions f^* . In (a), P and Q are Dirac masses at +1 and -1, resp., and \mathcal{F} is the 1-Lipschitz class, so that $\rho_{\mathcal{F}}$ is the Wasserstein metric. In (b), P and Q are standard Gaussian and Laplace distributions, resp., and \mathcal{F} is a ball in an RKHS with a Gaussian kernel.

Minimax Rates for General Estimators

Theorem 1. Suppose $\sigma_g \ge D/p_g$, $p'_d > p_g$. Then, up to polylog factors in n,

 $M\left(B_{p_g}^{\sigma_g}, B_{p_d}^{\sigma_d}\right) := \inf_{\widehat{p}} \sup_{p \in B_{r_g}^{\sigma_g}} \mathbb{E}\left[\rho_{B_{p_d}^{\sigma_d}}(p, \widehat{p}(X_{1:n}))\right] \asymp n^{-\frac{\sigma_g + \sigma_d}{2\sigma_g + D}} + n^{-\frac{\sigma_g + \sigma_d + D - D/p_g - D/p_d'}{2\sigma_g + D - 2D/p_g}} + n^{-\frac{1}{2}}.$

Moreover, this rate is achieved by the wavelet thresholding estimator of Donoho et al. [1].

Minimax Rates for Linear Estimators

Definition 3 (Linear Estimator). A distribution estimate \hat{P} is said to be linear if there exist measures $T_i(X_i, \cdot)$ such that for all measurable A,

 $\widehat{P}(A) = \sum_{i=1}^{n} T_i(X_i, A).$

Examples: empirical distribution, kernel density estimate, or orthogonal series estimate. **Theorem 2.** Suppose $r > \sigma_q \ge D/p_q$. Then, up to polylog factors in n,

 $M_{lin}\left(B_{p_g}^{\sigma_g}, B_{p_d}^{\sigma_d}\right) := \inf_{\substack{\widehat{p} \\ i:}} \sup_{p \in B_{p_d}^{\sigma_g}} \mathbb{E}_{X_{1:n}}\left[\rho_{B_{p_d}^{\sigma_d}}(p, \widehat{p}(X_{1:n}))\right] \asymp n^{-\frac{\sigma_g + \sigma_d}{2\sigma_g + D}} + n^{-\frac{\sigma_g + \sigma_d - D/p_g + D/p_d'}{2\sigma_g + D - 2D/p_g + 2D/p_d'}} + n^{-\frac{1}{2}},$

where the inf is over all linear estimates of $p \in \mathcal{F}_q$, and μ_p is the distribution with density p.

Error Bounds for GANs

A natural statistical model for a perfectly optimized GAN as a distribution estimator is

 $\widehat{P} := \underset{Q \in \mathcal{F}_q}{\operatorname{argmin}} \sup_{f \in \mathcal{F}_d} \underset{X \sim Q}{\mathbb{E}} \left[f(X) \right] - \underset{X \sim \widetilde{P}_n}{\mathbb{E}} \left[f(X) \right],$

where \mathcal{F}_d and \mathcal{F}_q are function classes parametrized by the discriminator and generator, resp [2].

Theorem 3 (Convergence Rate of a Regularized GAN). Fix a Besov density class $B_{p_a}^{o_g}$ with $\sigma_q > D/p_q$ and discriminator class $B_{p_d}^{\sigma_d}$. Then, for some constant C > 0 depending only on $B_{p_d}^{\sigma_d}$ and $B_{p_a}^{\sigma_g}$, for any desired approximation error $\epsilon > 0$, one can construct a GAN \hat{P} of the form (1) (with P_n denoting the wavelet-thresholded distribution) whose discriminator network N_d and generator network N_q are fully-connected ReLU networks, such that

 $\sup_{P \in B_{p_d}^{\sigma_g}} \mathbb{E}\left[d_{B_{p_d}^{\sigma_d}}\left(\widehat{P}, P\right)\right] \lesssim \epsilon + n^{-\eta(D, \sigma_d, p_d, \sigma_g, p_g)},$

where $\eta(D, \sigma_d, p_d, \sigma_q, p_q)$ is the optimal exponent in Theorem 1.

- N_d and N_q have (rate-optimal) depth $polylog(1/\epsilon)$ and width, max weight, and sparsity $poly(1/\epsilon)$.
- Proof uses recent fully-connected ReLU network for approximating Besov functions [3].

General Estimators

that $M(B_{1,2}^{\sigma_d}(\mathbb{R}^D), B_2^{\sigma_g}(\mathbb{R}^D)) \simeq n^{-\alpha(\sigma_d, \sigma_g)})$, ignoring polylogarithmic factors.

Applications/Examples

losses, we always have "Dense" rate

$$M\left(B_{p_g}^{\sigma_g}, B_{p_d}^{\sigma_d}\right) \asymp n^{-\frac{\sigma_g + \sigma_d}{2\sigma_g + D}} + n^{-1/2}.$$

$$M\left(B_{p_g}^{\sigma_g}, B_1^{\sigma_d}\right)$$

$$\sup_{P \text{ Borel}} \mathbb{E}\left[\rho_{\mathcal{F}}\left(P,\widehat{P}\right)\right] \leq \frac{L\|\kappa\|_{\mathcal{L}^{2}(\mathcal{X})}}{\sqrt{n}}$$

Example 4. (Sobolev IPMs) For $\sigma \in \mathbb{N}$, B_2^{σ} is the σ -order Hilbert-Sobolev ball $B_2^{\sigma} =$ $\left\{f \in \mathcal{L}^2(\mathcal{X}) : \int_{\mathcal{X}} \left(f^{(\sigma)}(x)\right)^2 dx \leq \infty\right\}, \text{ where } f^{(\sigma)} \text{ is the } \sigma^{th} \text{ derivative of } f. \text{ For these losses,}$ we always have the rate $M\left(B_2^{\sigma_g},B_2^{\sigma_d}
ight)$

(note that $n^{-1/2}$ dominates $\Leftrightarrow t > 2d$).

References

Linear Estimators

Figure 2: Minimax convergence rates as functions of discriminator smoothness σ_d and distribution function smoothness σ_g , in the case D = 4, $p_d = 1.2$, $p_g = 2$. Color shows exponent of minimax convergence rate (i.e., $\alpha(\sigma_d, \sigma_g)$ such

Example 1. (Total variation/Wasserstein-type losses) If, for some $\sigma_d > 0$, \mathcal{F} is a ball in B^s_{∞} , we obtain generalizations of total variation ($\sigma_d = 0$) and Wasserstein ($\sigma_d = 1$) losses. For these

Example 2. (Kolmogorov-Smirnov-type losses) If, for $\sigma_d > 0$, \mathcal{F} is a ball in $B_1^{\sigma_d}$, we obtain generalizations of Kolmogorov-Smirnov loss ($\sigma_d = 0$). For these losses, we have "Sparse" rate

$$\approx n^{-\frac{\sigma_g + \sigma_d - D/p_g}{2\sigma_g + D - 2D/p_g}} + n^{-1/2}.$$

Example 3. (*Maximum Mean Discrepancy*) If \mathcal{F} is a ball of radius L in a reproducing kernel Hilbert space with translation invariant kernel $K(x, y) = \kappa(x - y)$ for some $\kappa \in \mathcal{L}^2(\mathcal{X})$, then,

$$\left(\frac{\sigma_d}{2}\right) \asymp n^{-\frac{\sigma_g + \sigma_d}{2\sigma_g + D}} + n^{-1/2}.$$

[1] David L Donoho, Iain M Johnstone, Gérard Kerkyacharian, and Dominique Picard. Density estimation by wavelet thresholding. The Annals of Statistics, pages 508–539, 1996.

[2] Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, and Barnabas Poczos. Nonparametric density estimation under adversarial losses. In *NeurIPS*, 2018.

[3] Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces: optimal rate and curse of dimensionality. *arXiv preprint arXiv:1810.08033*, 2018.