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Introduction
• Nonparametric distribution estimation: Given n IID samples X1:n = X1, ..., Xn

IID∼ P from
an unknown distribution P , we want to estimate P .
– Important sub-routine of many statistical methods
– Usually analyzed in terms of L2 loss

* Severe curse of dimensionality
• We provide unified minimax-optimal estimation rates under large family of losses called

Integral Probability Metrics (IPMs), for many function classes (Sobolev, Besov, RKHS).
– Includes most common metrics on probability distributions
– Implicitly used in Generative Adversarial Networks (GANs)

* Allows us to derive statistical guarantees for GANs
– Reduced curse of dimensionality

Integral Probability Metrics (IPMs)

Definition 1 (IPM). Let P be a class of probability distributions on a sample space X , and F a
class of (bounded) functions on X . Then, the metric ρF : P × P → [0,∞] on P is defined by

ρF (P,Q) := sup
f∈F

∣∣∣∣∣ E
X∼P

[f (X)]− E
X∼Q

[f (X)]

∣∣∣∣∣ .

Definition 2 (Besov Ball). Let βj,k denote coefficients of a function f in a wavelet basis indexed
by j ∈ N, k ∈ [2j]. For parameters σ ≥ 0, p, q ∈ [1,∞], f ∈ L2 lies in the Besov ball Bσp,q iff

‖f‖Bσ
p,q

:=

∥∥∥∥{2j(σ+D(1/2−1/p))
∥∥∥{βλ}λ∈Λj

∥∥∥
lp

}
j∈N

∥∥∥∥
lq
≤ 1.

The parameter q affects convergence rates only by logarithmic factors, so we omit it in sequel.

Examples of IPMs

Distance F
Lp (including Total Variation/L1) B0

p′, with p′ = p
p−1

Wasserstein (“earth-mover”) B1
∞ (1-Lipschitz class)

Kolmogorov-Smirnov B1
1 (total variation ≤ 1)

Max. mean discrepancy (MMD) RKHS ball
GAN Discriminator parameterized by neural network

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
(a)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

= 1, (1) (Wasserstein Metric)

Distribution P
Distribution Q
Discriminator f

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
(b)

0.1

0.0

0.1

0.2

0.3

0.4

= (0, 0.1) (Gaussian MMD)

Figure 1: Examples of probability distributions P and Q and corresponding discriminator functions f ∗. In (a), P and
Q are Dirac masses at +1 and −1, resp., and F is the 1-Lipschitz class, so that ρF is the Wasserstein metric. In (b),
P and Q are standard Gaussian and Laplace distributions, resp., and F is a ball in an RKHS with a Gaussian kernel.

Minimax Rates for General Estimators

Theorem 1. Suppose σg ≥ D/pg, p′d > pg. Then, up to polylog factors in n,

M
(
B
σg
pg , B

σd
pd

)
:= inf

p̂
sup
p∈Bσg

pg

E
X1:n

[
ρBσd

pd
(p, p̂(X1:n))

]
� n
− σg+σd

2σg+D + n
−σg+σd+D−D/pg−D/p

′
d

2σg+D−2D/pg + n−
1
2.

Moreover, this rate is achieved by the wavelet thresholding estimator of Donoho et al. [1].

Minimax Rates for Linear Estimators

Definition 3 (Linear Estimator). A distribution estimate P̂ is said to be linear if there exist mea-
sures Ti(Xi, ·) such that for all measurable A,

P̂ (A) =

n∑
i=1

Ti(Xi, A).

Examples: empirical distribution, kernel density estimate, or orthogonal series estimate.
Theorem 2. Suppose r > σg ≥ D/pg. Then, up to polylog factors in n,

Mlin

(
B
σg
pg , B

σd
pd

)
:= inf

p̂
lin

sup
p∈Bσg

pg

E
X1:n

[
ρBσd

pd
(p, p̂(X1:n))

]
� n
− σg+σd

2σg+D + n
− σg+σd−D/pg+D/p

′
d

2σg+D−2D/pg+2D/p′
d + n−

1
2,

where the inf is over all linear estimates of p ∈ Fg, and µp is the distribution with density p.

Error Bounds for GANs
A natural statistical model for a perfectly optimized GAN as a distribution estimator is

P̂ := argmin
Q∈Fg

sup
f∈Fd

E
X∼Q

[f (X)]− E
X∼P̃n

[f (X)] , (1)

where Fd and Fg are function classes parametrized by the discriminator and generator, resp [2].

Theorem 3 (Convergence Rate of a Regularized GAN). Fix a Besov density class Bσgpg with
σg > D/pg and discriminator class Bσdpd . Then, for some constant C > 0 depending only on
Bσdpd and Bσgpg , for any desired approximation error ε > 0, one can construct a GAN P̂ of the
form (1) (with P̃n denoting the wavelet-thresholded distribution) whose discriminator network
Nd and generator network Ng are fully-connected ReLU networks, such that

sup
P∈Bσg

pg

E
[
dBσd

pd

(
P̂ , P

)]
. ε + n−η(D,σd,pd,σg,pg),

where η(D, σd, pd, σg, pg) is the optimal exponent in Theorem 1.

•Nd and Ng have (rate-optimal) depth polylog(1/ε) and width, max weight, and sparsity poly(1/ε).

• Proof uses recent fully-connected ReLU network for approximating Besov functions [3].

Example Phase Diagrams
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Figure 2: Minimax convergence rates as functions of discriminator smoothness σd and distribution function smooth-
ness σg, in the case D = 4, pd = 1.2, pg = 2. Color shows exponent of minimax convergence rate (i.e., α(σd, σg) such
that M

(
B
σd
1.2(RD), B

σg
2 (RD)

)
� n−α(σd,σg)), ignoring polylogarithmic factors.

Applications/Examples

Example 1. (Total variation/Wasserstein-type losses) If, for some σd > 0, F is a ball in Bs∞,
we obtain generalizations of total variation (σd = 0) and Wasserstein (σd = 1) losses. For these
losses, we always have “Dense” rate

M
(
B
σg
pg , B

σd
pd

)
� n
− σg+σd

2σg+D + n−1/2.

Example 2. (Kolmogorov-Smirnov-type losses) If, for σd > 0, F is a ball in Bσd1 , we obtain
generalizations of Kolmogorov-Smirnov loss (σd = 0). For these losses, we have “Sparse” rate

M
(
B
σg
pg , B

σd
1

)
� n
− σg+σd−D/pg

2σg+D−2D/pg + n−1/2.

Example 3. (Maximum Mean Discrepancy) If F is a ball of radius L in a reproducing kernel
Hilbert space with translation invariant kernel K(x, y) = κ(x− y) for some κ ∈ L2(X ), then,

sup
P Borel

E
[
ρF
(
P, P̂

)]
≤
L‖κ‖L2(X )√

n
.

Example 4. (Sobolev IPMs) For σ ∈ N, Bσ2 is the σ-order Hilbert-Sobolev ball Bσ2 ={
f ∈ L2(X ) :

∫
X

(
f (σ)(x)

)2
dx ≤ ∞

}
, where f (σ) is the σth derivative of f . For these losses,

we always have the rate

M
(
B
σg
2 , B

σd
2

)
� n
− σg+σd

2σg+D + n−1/2.

(note that n−1/2 dominates⇔ t ≥ 2d).
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