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Carnegie Mellon University

Introduction

I Sparse dictionary learning (a.k.a. sparse coding) is widely used to denoise data
I Convolutional Sparse Dictionary Learning (CSDL) is popular for data with

translation-invariant features (e.g., images, sound, movies, genomics, etc.) [1]
. Translation invariant dictionary⇒ smaller dictionary and greater sparsity

I We study minimax denoising of convolutionally sparse data

Contributions

1. First bounds on minimax reconstruction/denoising risk of CSDL.

2. Most work in compressed sensing assumes mutually independent noise; we
show this often-unrealistic assumption is not necessary for CSDL denoising.

3. Prior theory for sparse dictionary learning makes strong assumptions to ensure
identifiability of dictionary (e.g. incoherence or restricted isometry properties).
We show that, unlike dictionary recovery, sparse dictionary denoising requires
no assumptions whatsoever on dictionary.

Notation

I Multi-convolution: For two matrices R ∈ R(N−n+1)×K and D ∈ Rn×K

with equal numbers of columns, we define multi-convolution ⊗ by

R ⊗ D =
K∑

k=1

Rk ∗ Dk ∈ RN,

where ∗ denotes the usual convolution operator.
I Matrix Norms: For A ∈ Rn×m and p ∈ [0,∞], we write

‖A‖p,q :=

 m∑
j=1

(
n∑

i=1

|Ai ,j|p
)q/p

1/q

.

I Problem Domain: For N,K , n ∈ N and λ ≥ 0, we write

Sλ :=
{
(R,D) ∈ R(N−n+1)×K × Rn×K : ‖D‖2,∞ ≤ 1, ‖R‖1,1 ≤ λ

}
.

Modeling Assumptions

I Notation:
. Single Observation Y ∈ RN

. True signal X ∈ RN

. Noise ε ∈ RN

. Dictionary D ∈ Rn×K

. Encoding R ∈ R(N−n+1)×K
True Data (R ⊗ D)Patterns (D)Encoding (R)

✱

✱

Figure: Temporal Linear Generative Model.

I Temporal Linear Generative Model (TLGM) [2]:

Y = X + ε, where X = R ⊗ D, for some (R,D) ∈ Sλ.
I We consider several possible noise assumptions:

1. ε is called componentwise σ2-sub-Gaussian (ε ∈ CSG(σ2)) if

max
i∈{1,...,N}

E
[
etεi
]
≤ et2σ2/2, for all t ∈ R.

2. ε is called jointly σ2-sub-Gaussian (ε ∈ JSG(σ2)) if

E
[
e〈t,ε〉

]
≤ e‖t‖

2
2σ

2/2, for all t ∈ RN.

Note: In general, JSG(σ2) ⊆ CSG(σ2) and CSG(σ2) ⊆ JSG(Nσ2).
If the entries of ε are mutually independent, then CSG(σ2) ⊆ JSG(σ2).

3. Paper also has bounds under weaker bounded-moment assumptions.

CSDL Estimator

X̂λ = R̂λ ⊗ D̂λ where
(
R̂λ, D̂λ

)
:= argmin

(R,D)∈Sλ
‖Y − R ⊗ D‖22.

I Computable by alternating (between R and D) projected gradient descent
I Paper also has similar results for ‖R‖1,1-penalized version
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Theoretical Results: Upper Bounds

I Lemma 1 (Oracle Inequality): If Y = X + ε, then

‖X − X̂λ‖22 ≤ inf
(R,D)∈Sλ

‖X − R ⊗ D‖22︸ ︷︷ ︸
model misspecification

+2〈ε, X̂λ − R ⊗ D〉︸ ︷︷ ︸
statistical error

.

⇒ X̂λ robust to violation of TLGM assumption.
I Theorem 2: Under TLGM with ε ∈ CSG(σ2),

1

N
E
[∥∥∥X̂λ − X

∥∥∥2
2

]
≤

4λσ
√
2n log(2N)

N
.

I Theorem 3: Under TLGM with ε ∈ JSG(σ2),

1

N
E
[∥∥∥X̂λ − X

∥∥∥2
2

]
≤

4λσ
√
2 log(2(N − n + 1))

N
.

I Note: Under TLGM, we always have 1
N E

[∥∥∥X̂0 − X
∥∥∥2
2

]
≤ λ2

N ⇒ Under

extreme sparsity/noise (λ� σ
√

n logN), trivial estimate X̂ = 0 is better.

Theoretical Results: Lower Bounds

I Minimax Error: For λ ∈ [0,∞], N > n ∈ N, and a class E of RN-valued
random variables,

M(λ,N, n, E) := inf
X̂ :RN→RN

sup
(R,D)∈Sλ,ε∈E

1

N
E
[∥∥∥X̂ (Y )− X

∥∥∥2
2

]
.

I Theorem 4 (Componentwise Sub-Gaussian Noise):

M(λ,N, n,CSG(σ2)) ≥
λ

8N
min

{
λ, σ

√
n log(N − n + 1)

}
.

I Theorem 5 (Jointly Sub-Gaussian Noise):

M(λ,N, n, JSG(σ2)) ≥
λ

8N
min

{
λ, σ

√
log(N − n + 1)

}
.

I Note: Lower bounds hold even when D is known in advance; estimating X is
about as hard as estimating R (convolutional sparse recovery).

Simulation Results

10 2 10 4

A
ve

ra
ge

 L
2
 E

rr
or

10 -4

10 -3

10 -2

10 -1

10 0
kRk1;1 = 5

Sample Size
10 2 10 4

10 -4

10 -3

10 -2

10 -1

10 0
kRk1;1 = bN!1=2c

10 2 10 4

10 -4

10 -3

10 -2

10 -1

10 0
kRk1;1 = bN=10c

bX6bX0bX1
Upper bound
Lower bound

Experiment 1: Average L2-error as a function
of signal length N, with sparsity scaling as:

1. ‖R‖1,1 = 5 (Panel 1)

2. ‖R‖1,1 =
⌊√

N
⌋

(Panel 2)

3. ‖R‖1,1 = bN/10c (Panel 3)
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Experiment 2: Average L2-error as a function of dictionary element length n,
when entries of noise ε are (a) IID and (b) perfectly correlated.

Conclusions

I (Convolutional) sparse dictionary denoising is essentially assumption-free.
I For fixed n, CSDL is worst-case consistent (in reconstruction risk) if and only if

λσ
√
log(N)

N
→ 0.

I When noise is independent, error is independent of dictionary atom length n.
I Similar results hold for classical dictionary learning (replace n→ d ,N → N

d ).
I Alternating minimization appears minimax-rate optimal, consistent with recent

results suggesting that local optima in SDL are often global optima [3]
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