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Introduction

In the human genome, a large number of distal
enhancers regulate target genes through proxi-
mal promoters by forming enhancer-promoter in-
teractions (EPIs). Recent high-throughput chro-
matin interaction mapping methods allow us to
recognize potential EPIs, but it is largely unknown
if the sequence level features are sufficient to
build a predictive model for EPIs.

Research Questions

• Are there sequence-level EPI determinants?
• If so...

• What are they?
• Are they sufficient to be used to predict EPIs?
• How consistent are they across cell lines?

Data

1 Active enhancers and promoters identified from
ENCODE [1] and Roadmap Epigenomics [3]
annotations, in each of 6 cell lines.

2 As in [2], EP pairs were annotated as positive
(interacting) or negative (non-interacting) using
cell-line-specific genome-wide chromatin
contact measurements based on Hi-C [4].

3 20 negative pairs sampled per positive pair
• positive/negative pairs were constrained to have similar
distributions of enhancer-promoter distance

4 Thus, data are heavily imbalanced (> 95%
negative), in accordance with the fact that most
enhancer/promoter pairs do not interact.
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Figure 1: Diagram of PEP pipeline.

PEP learns a gradient tree boosting
model [5] using two sets of features:

• PEP-Motif finds known transcription
factor binding site (TFBS) patterns.

• PEP-Word learns a word embedding
model to obtain continuous distributed
feature representation of sequences.
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Figure 2: Diagram of SPEID network.

SPEID has three main sequential layers:

• Parallel convolution/pooling layers learn to extract
short (40bp) sequence features from both inputs.

• LSTM layer learns to identify interactions between
sequence features and between inputs.

• Dense layer predicts EPI from these high-level
features.

Sequence Features from PEP

We ranked clustered TF features from
PEP-Motif based on feature importance
estimated using XGBoost.
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Sequence Features from SPEID

We ranked importance of TF’s in SPEID using in silico
mutagenesis (replacing TFBS with noise and measuring
impact on prediction performance).
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Prediction Results
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Conclusions

Main Result

Proposed methods achieve state-of-the-art
EPIs prediction performance using only DNA
sequence-based features. Thus, sequences

encode the vital mechanisms mediating EPIs.

• Recent machine learning models and
representations for complex features, such as
deep networks and word embeddings, can help
extract crucial predictive information directly
from genetic sequences.

• Sequence-based prediction models can identify
sequence features predictive of EPI.


