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Introduction

I The difficulty of a statistical problem is often determined by the

complexity of the data source.

I In nonparametric statistics, complexity is often measured by the

smoothness of a density or regression function.
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Figure: Functions of decreasing smoothness (increasing complexity) are harder to estimate.
(a) constant (‖f‖H1 = 0) (b) parabola (‖f‖H3 = 0) (c) complex (‖f‖Hs large, ∀s > 0)

I Smoothness of function f can be quantified in several ways, such as:

. Sobolev norms, e.g. ‖f‖2
H1 = ‖f ′‖2

L2
=
∫

(f ′(x))2 dx.
. Hölder norms, e.g. ‖f‖C1 = ‖f ′‖L∞ = ess supx |f ′(x)|.
. Various RKHS norms

I Question: Can we estimate complexity from data?
I Our Answer: Yes (much easier than estimating f!)

Sobolev Norms

I Sobolev norms are L2-norms of derivatives. For example, the

sth-order Sobolev norm of an s-times differentiable f : [−π, π]→ R is

‖f‖2
Hs = ‖f(s)‖2

2 =

∫ π

−π

(
f(s)(x)

)2
dx.

I Notation: Let ϕz(x) = eizx be the zth Fourier basis element and

f̃(z) := 〈f, ϕz〉L2 =

∫ π

−π
f(x)ϕz(x) dx

be the zth Fourier coefficient of F.

I By Parseval’s identity and the

Fourier transform of a derivative,

the Sobolev norm can be
written in terms of Fourier
coefficients:∫ π

−π

(
f(s)(x)

)2
dx =

∑
z∈Z

∣∣∣f̃(s)(z)
∣∣∣2

=
∑
z∈Z

z2s
∣∣∣̃f(z)

∣∣∣2 .
(Intuition: The smoother f is, the

faster its Fourier coefficients decay.)
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Figure: First 7 Fourier basis elements.

Estimating Sobolev Norms

I For a probability density function p on [−π, π], Fourier coefficients
are expectations, and hence easy to estimate from IID data

X1, . . . ,Xn ∼ p:

p̃(z) =

∫ π

−π
p(x)ϕz(x) dx = E

X∼p
[ϕz(X)] ≈

1

n

n∑
j=1

ϕz(Xi) =: p̂(z).

I To estimate ‖p‖Hs, truncate z ≤ Zn and plug in p̂(z) for p̃(z):

Ŝn(s) =
∑
|z|≤Zn

z2s|p̂(z)|2.

Overview of Results

I Our main results are the following:

. Ŝn(s) converges at the minimax-optimal rate.

. We derive the asymptotic distribution of Ŝn(s).

. Ŝn(s) can be computed in O(n log n) time via FFT

I All our results extend to more general cases:

. p has multidimensional support RD

. p has unbounded support (with minor caveats)

. Sobolev inner products 〈p, q〉Hs and metrics ‖p− q‖Hs

. non-integer s ∈ R

. estimating ‖f‖Hs for a regression function f

I can scale to higher dimensions assuming an additive model

Results: Convergence Rates

I Assume, for some t > s, p ∈ Ht. Then, for some constant C, we prove:

. bias bound:
∣∣∣E [Ŝn(s)

]
− ‖p‖2

Hs

∣∣∣ ≤ CZ2(s−t)
n .

. variance bound: V
[
Ŝn(s)

]
≤ C

Z4s+D
n

n
+

C

n
.

I These imply a mean squared error bound:

E
[(

Ŝn(s)− ‖p‖2
Hs

)2
]
≤ C

(
Z4(s−t)

n +
Z4s+D

n

n
+ n−1

)
,

for some constant C > 0 independent of n.

I Minimizing over Zn gives Zn � n
2

4t+D, and hence

E
[(

Ŝn(s)− ‖p‖2
Hs

)2
]
� nmax{8(s−t)

4t+D
,−1},

which is precisely the minimax optimal rate. [1]

I When t ≥ 2s + D/4, setting Zn � n
1

4s+D gives the parametric rate

MSE � n−1 adaptively (without knowing t).

Results: Asymptotic Distributions

I Assume t > 2s + D/4, and set Zn � n
1

4s+D. Then, we prove:

. Ŝn(s) has an χ2 asymptotic distribution with non-centrality

parameter ‖p‖Hs.
. Specifically, define W ∈ Rn×Zn by Wj,z := zsϕz(Xj). If µ̂ ∈ RZn

and Σ̂ ∈ RZn×Zn are the empirical mean and covariance of W, then

Qχ2(Zn,‖p‖Hs)

(
nµ̂TΣ̂−1µ̂

)
D→ Uniform([0, 1]),

where Qχ2(d,λ) denotes the quantile function of the χ2 distribution

with d degrees of freedom and non-centrality parameter λ.

I Sobolev metrics also have χ2 asymptotic distributions

I Sobolev inner products have normal asymptotic distributions

Consequences and Applications

I Estimate key “theoretical” quantities in nonparametric error bounds.

I Test the null hypothesis that f satisfies a Sobolev condition.

I Provide a fast nonparametric two-sample test. Suggests how

parameters should scale in recent work on two-sample testing. [2]

Experimental Results

I Estimate Sobolev quantities for synthetic data with known ground truth

I Sobolev norm estimation (‖p‖Hs for different p and s):
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‖N (0, 1) ‖H1.
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I Sobolev distance estimation (‖p− q‖H0 for different p and q):

10
5

0.02

0.025

0.03

0.035

0.04

0.045

number of samples

L
22

 

 

Estimated Distance
True Distance

3D Gaussians with
diff. means.
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3D Gaussians with
diff. variance.
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Uniform and trian-
gular distributions.
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