Efficient Nonparametric Smoothness Estimation
Shashank Singh, Simon S. Du, and Barnabás Póczos
Machine Learning Department, Carnegie Mellon University

Carnegie

 Mellon University
Introduction

- The difficulty of a statistical problem is often determined by the complexity of the data source
- In nonparametric statistics, complexity is often measured by the smoothness of a density or regression function

Figure: Functions of decreasing smoothness (increasing complexity) are harder to estimate (a) constant $\left(\|\mathbf{f}\|_{\mathcal{H}^{1}}=\mathbf{0}\right)(\mathrm{b})$ parabola $\left(\|\mathbf{f}\|_{\mathcal{H}^{3}}=\mathbf{0}\right)(\mathrm{c})$ complex $\left(\|\mathbf{f}\|_{\mathcal{H}^{s}}\right.$ large, $\left.\forall \mathbf{s}>\mathbf{0}\right)$

- Smoothness of function \mathbf{f} can be quantified in several ways, such as $>$ Sobolev norms, e.g. $\|f\|_{\mathcal{H}^{1}}^{2}=\left\|\mathbf{f}^{\prime}\right\|_{\mathcal{L}_{2}}^{2}=\int\left(\mathbf{f}^{\prime}(\mathbf{x})\right)^{2} \mathbf{d x}$. Hölder norms, e.g. $\|\mathbf{f}\|_{\mathcal{C}^{1}}=\left\|\mathbf{f}^{\prime}\right\|_{\mathcal{L}^{\infty}}=\operatorname{ess}^{\prime} \sup _{\mathrm{x}}\left|\mathbf{f}^{\prime}(\mathbf{x})\right|$ Various RKHS norms
- Question: Can we estimate complexity from data?
- Our Answer: Yes (much easier than estimating f!)

Sobolev Norms

- Sobolev norms are \mathcal{L}_{2}-norms of derivatives. For example, the $\mathbf{s}^{\text {th }}$-order Sobolev norm of an s-times differentiable $\mathbf{f}:[-\pi, \pi] \rightarrow \mathbb{R}$ is

$$
\|\mathbf{f}\|_{\mathcal{H}^{\mathrm{s}}}^{2}=\left\|\mathbf{f}^{(\mathrm{s})}\right\|_{2}^{2}=\int_{-\pi}^{\pi}\left(\mathbf{f}^{(\mathrm{s})}(\mathrm{x})\right)^{2} \mathrm{dx}
$$

- Notation: Let $\varphi_{\mathrm{z}}(\mathrm{x})=\mathrm{e}^{\mathrm{izx}}$ be the $\mathrm{z}^{\text {th }}$ Fourier basis element and

$$
\tilde{f}(\mathrm{z}):=\left\langle\mathrm{f}, \varphi_{\mathrm{z}}\right\rangle_{\mathcal{L}_{2}}=\int_{-\pi}^{\pi} \mathrm{f}(\mathrm{x}) \varphi_{\mathrm{z}}(\mathrm{x}) \mathrm{dx}
$$

be the $\mathbf{z}^{\text {th }}$ Fourier coefficient of \mathbf{F}

- By Parseval's identity and the Fourier transform of a derivative, the Sobolev norm can be written in terms of Fourier coefficients
$\int_{-\pi}^{\pi}\left(f^{(s)}(x)\right)^{2} d x=\sum_{z \in \mathbb{Z}}\left|\widetilde{f^{(s)}}(z)\right|^{2}$

$$
=\sum_{z \in \mathbb{Z}} z^{2 s}|\widetilde{\mathbf{f}}(z)|^{2}
$$

(Intuition: The smoother \mathbf{f} is, the
Figure: First 7 Fourier basis elements faster its Fourier coefficients decay.)

Estimating Sobolev Norms

- For a probability density function \mathbf{p} on $[-\pi, \pi]$, Fourier coefficients are expectations, and hence easy to estimate from IID data
$X_{1}, \ldots, X_{n} \sim p$
$\tilde{\mathrm{p}}(\mathrm{z})=\int_{-\pi}^{\pi} \mathrm{p}(\mathrm{x}) \varphi_{\mathrm{z}}(\mathrm{x}) \mathrm{dx}=\underset{\mathrm{x} \sim \mathrm{p}}{\mathbb{E}}\left[\varphi_{\mathrm{z}}(\mathrm{X})\right] \approx \frac{1}{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \varphi_{\mathrm{z}}\left(\mathrm{X}_{\mathrm{i}}\right)=: \hat{\mathrm{p}}(\mathrm{z})$.
- To estimate $\|\mathbf{p}\|_{\mathcal{H}^{s}}$, truncate $\mathbf{z} \leq \mathbf{Z}_{\mathrm{n}}$ and plug in $\hat{\mathbf{p}}(\mathbf{z})$ for $\tilde{\mathbf{p}}(\mathbf{z})$:

$$
\hat{\mathbf{S}}_{\mathrm{n}}(\mathrm{~s})=\sum_{|\mathrm{z}| \leq \mathrm{z}_{\mathrm{n}}} \mathrm{z}^{2 s}|\hat{\mathrm{p}}(\mathrm{z})|^{2} .
$$

Overview of Results

- Our main results are the following
$\triangleright \hat{S}_{\mathrm{n}}(\mathrm{s})$ converges at the minimax-optimal rate.
\triangleright We derive the asymptotic distribution of $\hat{\mathbf{S}}_{\mathrm{n}}(\mathrm{s})$
$\triangleright \hat{\mathbf{S}}_{\mathrm{n}}(\mathbf{s})$ can be computed in $\mathbf{O}(\mathbf{n} \log \mathrm{n})$ time via FFT
- All our results extend to more general cases:
$\triangleright \mathbf{p}$ has multidimensional support \mathbb{R}^{D}
$\triangleright \mathbf{p}$ has unbounded support (with minor caveats)
\triangleright Sobolev inner products $\langle\mathbf{p}, \mathbf{q}\rangle_{\mathcal{H}^{s}}$ and metrics $\|\mathbf{p}-\mathbf{q}\|_{\mathcal{H}^{s}}$
\triangleright non-integer $\mathbf{s} \in \mathbb{R}$
\triangleright estimating $\|\mathbf{f}\|_{\mathcal{H}^{\text {s }}}$ for a regression function \mathbf{f}
- can scale to higher dimensions assuming an additive model

Results: Convergence Rates

- Assume, for some $\mathbf{t}>\mathbf{s}, \mathbf{p} \in \mathcal{H}^{\mathbf{t}}$. Then, for some constant \mathbf{C}, we prove
\triangleright bias bound:
$\left|\mathbb{E}\left[\hat{\mathbf{s}}_{\mathrm{n}}(\mathrm{s})\right]-\|\mathbf{p}\|_{\mathrm{H}^{2}}^{2}\right| \leq \mathrm{CZ}_{\mathrm{n}}^{2(s-t)}$
variance bound:

$$
\mathbb{V}\left[\hat{S}_{n}(s)\right] \leq C \frac{Z_{n}^{4 s+D}}{n}+\frac{C}{n}
$$

- These imply a mean squared error bound:

$$
\mathbb{E}\left[\left(\hat{S}_{n}(s)-\|p\|_{H^{s}}^{2}\right)^{2}\right] \leq C\left(Z_{n}^{4(s-t)}+\frac{Z_{n}^{4 s+D}}{n}+n^{-1}\right)
$$

for some constant $\mathbf{C}>\mathbf{0}$ independent of \mathbf{n}.

- Minimizing over $\mathbf{Z}_{\mathbf{n}}$ gives $\mathbf{Z}_{\mathbf{n}} \asymp \mathbf{n}^{\frac{2}{4+\boldsymbol{D}}}$, and hence

$$
\mathbb{E}\left[\left(\hat{S}_{n}(s)-\|p\|_{H^{s}}^{2}\right)^{2}\right] \asymp n^{\max \left\{\frac{8(s-t)}{4++D},-1\right\}}
$$

which is precisely the minimax optimal rate. [1]

- When $\mathbf{t} \geq 2 s+\mathbf{D} / 4$, setting $\mathbf{Z}_{\mathbf{n}} \asymp \mathbf{n}^{\frac{1}{4 s+D}}$ gives the parametric rate MSE $\asymp \mathbf{n}^{-1}$ adaptively (without knowing \mathbf{t})

Results: Asymptotic Distributions

- Assume $\mathbf{t}>2 \mathrm{~s}+\mathbf{D} / 4$, and set $\mathbf{Z}_{\mathbf{n}} \asymp \mathbf{n}^{\frac{1}{4 s+\mathrm{D}}}$. Then, we prove $\triangleright \hat{S}_{\mathrm{n}}(\mathrm{s})$ has an χ^{2} asymptotic distribution with non-centrality parameter $\|\mathbf{p}\|_{\mathcal{H}^{s}}$
\triangleright Specifically, define $W \in \mathbb{R}^{n \times Z_{n}}$ by $W_{j, z}:=z^{s} \varphi_{z}\left(X_{j}\right)$. If $\hat{\mu} \in \mathbb{R}^{\mathbf{z}_{n}}$ and $\hat{\boldsymbol{\Sigma}} \in \mathbb{R}^{\mathbf{Z}_{\mathrm{n}} \times \mathbf{Z}_{\mathrm{n}}}$ are the empirical mean and covariance of \mathbf{W}, then $\mathbf{Q}_{\chi^{2}\left(\mathbf{Z}_{\mathbf{n}},\|\mathbf{p}\|_{\mathcal{H}^{s}}\right)}\left(\mathbf{n} \hat{\mu}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mu}\right) \xrightarrow{\mathrm{D}} \operatorname{Uniform}([0,1])$,
where $\mathbf{Q}_{\chi^{2}(\mathbf{d}, \lambda)}$ denotes the quantile function of the χ^{2} distribution with \mathbf{d} degrees of freedom and non-centrality parameter $\boldsymbol{\lambda}$.
- Sobolev metrics also have χ^{2} asymptotic distributions
- Sobolev inner products have normal asymptotic distributions

Consequences and Applications

- Estimate key "theoretical" quantities in nonparametric error bounds.
- Test the null hypothesis that \mathbf{f} satisfies a Sobolev condition
- Provide a fast nonparametric two-sample test. Suggests how parameters should scale in recent work on two-sample testing. [2]

Experimental Results

- Estimate Sobolev quantities for synthetic data with known ground truth
- Sobolev norm estimation ($\|\mathbf{p}\|_{\mathcal{H}^{s}}$ for different \mathbf{p} and \mathbf{s})

$\|\mathcal{N}(0,1)\|_{\mathcal{H}^{0}}$.

3D Gaussians with diff. means.

$\|\mathcal{N}(\mathbf{0}, 1)\|_{\mathcal{H}^{1}}$

3D Gaussians with diff. variance.

$\|1+\cos (2 \pi x)\|_{\mathcal{H}^{2}}$
$-\mathbf{q} \|_{\mathcal{H}^{0}}$ for different \mathbf{p} and \mathbf{q}):
 support.

$\|1+\cos (2 \pi \mathrm{x})\|_{\mathcal{H}^{3}}$

References

Peter Siciel and Yazooco Ritor.
Sankhyä: The Indian Journal of Statisticic, Series A, pages 381-393, 1988 .
Kacper P Chwialkowski, Aaditya Ramdas, Dino Sejdinovic, and Arthur Gretton.

