

Introduction

- ► The difficulty of a statistical problem is often determined by the complexity of the data source.
- In nonparametric statistics, complexity is often measured by the smoothness of a density or regression function.

Figure: Functions of decreasing smoothness (increasing complexity) are harder to estimate. (a) constant $(\|\mathbf{f}\|_{\mathcal{H}^1} = \mathbf{0})$ (b) parabola $(\|\mathbf{f}\|_{\mathcal{H}^3} = \mathbf{0})$ (c) complex $(\|\mathbf{f}\|_{\mathcal{H}^s} \text{ large, } \forall \mathbf{s} > \mathbf{0})$

- Smoothness of function **f** can be quantified in several ways, such as:
- ▷ Sobolev norms, e.g. $\|\mathbf{f}\|_{\mathcal{H}^1}^2 = \|\mathbf{f}'\|_{\mathcal{L}_2}^2 = \int (\mathbf{f}'(\mathbf{x}))^2 d\mathbf{x}$.
- ▷ Hölder norms, e.g. $\|\mathbf{f}\|_{\mathcal{C}^1} = \|\mathbf{f}'\|_{\mathcal{L}^{\infty}} = \operatorname{ess\,sup}_{\mathbf{x}} |\mathbf{f}'(\mathbf{x})|$.
- Various RKHS norms
- Question: Can we estimate complexity from data?
- Our Answer: Yes (much easier than estimating f!)

Sobolev Norms

Sobolev norms are \mathcal{L}_2 -norms of derivatives. For example, the s^{th} -order Sobolev norm of an s-times differentiable $f: [-\pi, \pi] \to \mathbb{R}$ is

$$\|\mathbf{f}\|_{\mathcal{H}^{s}}^{2} = \|\mathbf{f}^{(s)}\|_{2}^{2} = \int_{-\pi}^{\pi} \left(\mathbf{f}^{(s)}(\mathbf{x})\right)^{2} d\mathbf{x}.$$

Notation: Let $\varphi_z(\mathbf{x}) = \mathbf{e}^{\mathbf{i}\mathbf{z}\mathbf{x}}$ be the $\mathbf{z}^{\mathbf{th}}$ Fourier basis element and

$$f(z) := \langle \mathbf{f}, \varphi_z \rangle_{\mathcal{L}_2} = \int_{-\pi}^{\pi} \mathbf{f}(\mathbf{x}) \varphi_z(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

be the z^{th} Fourier coefficient of **F**.

By Parseval's identity and the Fourier transform of a derivative, the **Sobolev norm can be** written in terms of Fourier **coefficients**:

$$\int_{-\pi}^{\pi} \left(\mathbf{f}^{(\mathrm{s})}(\mathbf{x}) \right)^2 \, \mathrm{d}\mathbf{x} = \sum_{\mathbf{z} \in \mathbb{Z}} \left| \widetilde{\mathbf{f}^{(\mathrm{s})}}(\mathbf{z}) \right|^2$$
$$= \sum_{\mathbf{z} \in \mathbb{Z}} \mathbf{z}^{2\mathrm{s}} \left| \widetilde{\mathbf{f}}(\mathbf{z}) \right|^2.$$

(Intuition: The smoother **f** is, the faster its Fourier coefficients decay.)

http://www.andrew.cmu.edu/user/sss1/

Efficient Nonparametric Smoothness Estimation Shashank Singh, Simon S. Du, and Barnabás Póczos Machine Learning Department, Carnegie Mellon University

Estimating Sobolev Norms

For a probability density function p on [are expectations, and hence easy to es $X_1, \ldots, X_n \sim p$:

$$\tilde{\mathbf{p}}(\mathbf{z}) = \int_{-\pi}^{\pi} \mathbf{p}(\mathbf{x}) \varphi_{\mathbf{z}}(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \mathop{\mathbb{E}}_{\mathbf{X} \sim \mathbf{p}} \left[\varphi_{\mathbf{z}}(\mathbf{x}) \right]$$

► To estimate $||\mathbf{p}||_{\mathcal{H}^s}$, truncate $\mathbf{z} \leq \mathbf{Z}_n$ a $\hat{S}_n(s) = \sum z$

Overview of Results

- Our main results are the following:
 - \triangleright $\hat{S}_n(s)$ converges at the minimax-opt We derive the **asymptotic distribut** \triangleright
 - **S**_n(s) can be computed in O(n log \triangleright
- All our results extend to more general \triangleright **p** has multidimensional support \mathbb{R}^{D}
 - **p** has unbounded support (with minor \triangleright
 - Sobolev inner products $\langle \mathbf{p}, \mathbf{q} \rangle_{\mathcal{H}^{s}}$ and \triangleright
 - ▷ non-integer $\mathbf{s} \in \mathbb{R}$
 - estimating $\|\mathbf{f}\|_{\mathcal{H}^{s}}$ for a regression fund can scale to higher dimensions assu

Results: Convergence Rates

- Assume, for some $\mathbf{t} > \mathbf{s}$, $\mathbf{p} \in \mathcal{H}^{\mathbf{t}}$. Then
 - **bias bound:**
 - variance bound: \triangleright
- These imply a mean squared error bo

 $|\mathbb{E}|\hat{S}_n(s)| -$

- $\mathbb{E}\left|\left(\hat{S}_{n}(s) \|p\|_{H^{s}}^{2}\right)^{2}\right| \leq C\left(Z\right)$
- for some constant $\mathbf{C} > \mathbf{0}$ independent of • Minimizing over Z_n gives $Z_n \simeq n^{\frac{2}{4t+D}}$, and **√**2]

$$\mathbb{E}\left[\left(\hat{\mathbf{S}}_{\mathsf{n}}(\mathsf{s}) - \|\mathbf{p}\|_{\mathsf{H}^{\mathsf{s}}}^{2}\right)^{-}\right]$$

which is precisely the **minimax optimal** \blacktriangleright When $\mathbf{t} \geq 2\mathbf{s} + \mathbf{D}/4$, setting $\mathbf{Z}_{\mathbf{n}} \simeq \mathbf{n}^{\overline{4s}}$ MSE \asymp n⁻¹ adaptively (without kno

	Results: Asympt
$[-\pi, \pi]$, Fourier coefficients stimate from IID data $\mathbf{x}(\mathbf{x}) = \frac{1}{n} \sum_{j=1}^{n} \varphi_{z}(\mathbf{x}_{i}) =: \hat{p}(z).$ and plug in $\hat{p}(z)$ for $\tilde{p}(z)$: $2^{s} \hat{p}(z) ^{2}.$	 Assume t > 2s + D_ℓ \$\hat{S}_n(s)\$ has an \$\chi^2\$ a parameter \$ p \$\Hetas.\$ Specifically, define and \$\hat{\sigma}\$ ∈ \$\mathbb{R}^{Z_n × Z_n}\$ \$\begin{aligned} Q_{\chi^2(\mathbf{C}_n, \mathbf{l})} & \mathbf{e}_{\chi} & \mathbf{e}
	Consequences a
timal rate. tion of Ŝ _n (s). g n) time via FFT ol cases:	 Estimate key "theoret Test the null hypothes Provide a fast nonparameters should sca
r caveats) metrics ∥ p — q ∥ _ℋ ₅	Experimental Re
ction f uming an additive model , for some constant C, we prove: $ \mathbf{p} _{\mathbf{H}^{s}}^{2} \leq CZ_{n}^{2(s-t)}.$ $\leq C\frac{Z_{n}^{4s+D}}{n} + \frac{C}{n}.$ sund:	 Estimate Sobolev quat Sobolev norm estimated for the Distance for the
$Z_{n}^{4(s-t)} + \frac{Z_{n}^{4s+D}}{n} + n^{-1}$,	3D Gaussians with 3D Gaus diff. means. diff. vari
f n. ad hence $\approx n^{\max\left\{\frac{8(s-t)}{4t+D},-1\right\}},$ I rate. [1] $\frac{1}{+D}$ gives the parametric rate wing t).	 References Peter J Bickel and Yaacov Ritov. Estimating integrated squared density. Sankhyā: The Indian Journal of State Kacper P Chwialkowski, Aaditya Ram Fast two-sample testing with analytic In NIPS, pages 1972–1980, 2015.

December 5, 2016

Carnegie Nellon University

totic Distributions

/4, and set $\mathbf{Z}_{\mathbf{n}} \simeq \mathbf{n}^{\frac{1}{4s+D}}$. Then, we prove: asymptotic distribution with non-centrality

 $\mathbf{w} \in \mathbb{R}^{n imes \mathsf{Z}_n}$ by $\mathsf{W}_{\mathsf{j},\mathsf{z}} := \mathsf{z}^{\mathsf{s}} \varphi_{\mathsf{z}}(\mathsf{X}_{\mathsf{j}})$. If $\hat{\mu} \in \mathbb{R}^{\mathsf{Z}_n}$ are the empirical mean and covariance of W, then $\|\mathbf{p}\|_{\mathcal{H}^{\mathsf{s}}}\left(\mathbf{n}\hat{\boldsymbol{\mu}}^{\mathsf{T}}\hat{\boldsymbol{\Sigma}}^{-1}\hat{\boldsymbol{\mu}}\right) \stackrel{\mathsf{D}}{\rightarrow} \mathsf{Uniform}([0,1]),$

notes the quantile function of the χ^2 distribution freedom and non-centrality parameter λ . have χ^2 asymptotic distributions s have normal asymptotic distributions

nd Applications

tical" quantities in nonparametric error bounds. sis that **f** satisfies a Sobolev condition. arametric two-sample test. Suggests how le in recent work on two-sample testing. [2]

sults

ntities for synthetic data with known ground truth tion $(\|\mathbf{p}\|_{\mathcal{H}^s})$ for different \mathbf{p} and \mathbf{s} :

stics, Series A, pages 381–393, 1988.

das, Dino Sejdinovic, and Arthur Gretton.

MTFXbeamerposter http://www-i6.informatik.rwth-aachen.de/~dreuw/latexbeamerposter.php

sss1@andrew.cmu.edu