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Introduction

I Many important statistical quantites can be written as

F(p1, . . . , pk) =

∫
X1×···×Xk

f(p1(x1), . . . , pk(xk)) d(x1, . . . , xk),

where each pi : Xi ⊆ Rd→ R+ is a probability density,

f : Rk→ R is smooth.

I Examples of such quantities, which we call Density Functionals, are:

. Shannon/KL, Rényi-α, and Tsallis-α entropies, mutual

informations, and divergences
. f-divergences (e.g., Hellinger, Jensen-Shannon, etc.)
. Lp norms and distances
. Conditional versions of the above quantities

I For many of these quantities, few consistent estimators are known,

and almost none of these have finite-sample convergence of

concentration guarantees.

I We propose and study a nonparametric estimator for such quantities,

based on plugging in a boundary-corrected kernel density estimate.

I We prove that, when each Xi = [0, 1]d is a unit cube:

. our estimator is exponentially concentrated about its mean.

. for densities in a β-Hölder smoothness class with certain

boundary conditions, the bias of the estimator decays as

O
(
n−

β
β+d

)
, where n is the number of samples from each density.

Assumptions

Let β > 0, and let ` := bβc be the greatest integer strictly less than

β. We make the following four assumptions on f, the densities

p1, . . . , pk, the kernel K:

I (f-Smoothness) f is twice continuously differentiable.

I (Density Smoothness) All (mixed) `-order partial derivatives of

p1, . . . , pk exist and are (β − `)-Hölder Continuous (i.e., there

exists L ∈ R such that, ∀x, x + v ∈ X , |~i| = `, each

|D~ipi(x + v)− D
~ipi(x)| ≤ L‖v‖β−`2 ).

I (Density Boundaries) All derivatives of p1, . . . , pk of order up to

` vanish at the boundary

∂X = {x ∈ X : xi ∈ {0, 1} for some i ∈ [d]}
(i.e., sup1≤|~i|≤` |D

~i(x)| → 0 as dist(x, ∂X )→ 0).

I (Kernel) The kernel K : R→ R has support in [−1, 1],∫ 1

−1
K(u) du = 1 and

∫ 1

−1
ujK(u) du = 0, ∀j ∈ {1, . . . , `}.

Mirrored Kernel Density Estimator

Given a bandwidth h, our density functional

estimate is computed in 3 steps:

1. Augment data from pi with reflections

over each subset of edges of Xi.

2. Compute kernel density estimates

p̂1, . . . , p̂k from the augmented data,

using a product kernel and bandwidth h.

3. Estimate F(p1, . . . , pk) by the plug-in

estimator F(p̂1, . . . , p̂k).

Figure : Four kernels
centered on a single data point
and its three reflected copies, in
the case d = 2.

Results: Exponential Concentration Bound

I We show that, ∀ε > 0,

P (|F(p̂1, . . . , p̂k)− EF(p̂1, . . . , p̂k)| > ε) ≤ 2 exp

(
−
ε2n

C2
V

)
,

where CV = 2Cf‖K‖d1 is constant in n and h.

I Main tool in proof is McDiarmid’s Inequality, by which it suffices to

bound the change in the estimate when resampling a single data

point by CV/n.

I This is achieved by combining the smoothness of f with the

observation that the integral of the mirrored kernel density estimate

changes by at most 2
n
‖K‖d1.

Results: Convergence Rate

I We show there exists CB ∈ R (constant in n and h) such that

|EF(p̂1, . . . , p̂k)− F(p1, . . . , pk)| ≤ CB

(
hβ +

1

nhd

)
.

I Previous work [2] bounded the integral of each mirrored kernel

density estimator’s pointwise squared bias:∫
Xi

(Ep̂i(x)− p(x))2 dx ≤ Cbh
2β (1)

I To derive our convergence rate, we make a second-order Taylor

estimate of f and then use Hölder’s Inequality to reduce the resulting

terms to (1) and the integrated mean squared error of a standard

kernel density estimator.

Condition Density Functionals

I It is often useful to condition density functionals on one or more

additional variables; e.g., to estimate

F(P) =

∫
Z
PZ(z)f

(∫
X
g

(
PX,Z(x, z)

PZ(z)

)
dx

)
dz.

I For example, conditional entropy estimation has applications to

clustering [3] and conditional mutual information is useful for learning

graphical models [1].

I As long as the density of the conditioned variable (e.g., PZ) has a

positive lower bound, our results extend to the mirrored kernel

density plug-in estimator for such conditional density functionals.

Discussion

I The exponential concentration bound gives a bound on the variance

of the estimator:
V[F(p̂1, . . . , p̂k)] ≤ C2

Vn
−1.

I This does not depend on h, so pick h to minimize the bias bound.

. Asymptotically, the optimal h is h � n−
1

β+d, so bias bound is

O
(
n−

β
β+d

)
.

I Hence MSE is O(n−
2β
β+d + n−1), which is the parametric rate

O(n−1) if β ≥ d and O(n−
β
β+d) otherwise.

I Kernel assumptions for the bias bound necessitate ‖K‖1 > 1 when

β ≥ 2 and CV includes ‖K‖d1, which is exponential in d.

. Lower bounds in d are unknown; whether dependence is

necessarily exponential is an important open problem.

I For divergences and information theoretic density functionals, the

integral in the plug-in estimator can be well estimated by a sample

mean. In this case, our estimator can be computed in O(2dn log n),

making it effective for large, low-dimensional datasets.
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