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Introduction

I Estimating dependence between variables is a fundamental subproblem

in machine learning.

I Mutual information (MI) is a popular measure of dependence.

I Previous MI estimators need strong assumptions or low dimensionality.

I We propose/study nonparanormal estimators to bridge this gap.

Information Estimation

I Multivariate Mutual Information: Given a D-dimensional random

variable X = (X1, ...,XD) with joint density p = p1 × · · · pD,

I (X ) := E
X∼p

[
log

(
p(X )∏D

j=1 pj(Xj)

)]
= DKL

(
p
∥∥∥∏D

j=1pj

)
,

where DKL denotes KL-divergence.

. I (X ) measures dependency/redundancy between X1, ...,XD.

. Pairwise mutual information, conditional mutual information,

transfer entropy, etc. can be written in terms of I .

I Information Estimation refers to the problem of estimating I (X ),

given n IID samples of a random variable X .

I Gaussian case: If X is known to be Gaussian, the minimax mean

squared error for information estimation is essentially 2D/n. [1]

. consistent if D ∈ o(n), but Gaussianity is very restrictive

. fails if X is heavy-tailed, multi-modal, skewed, nonlinear

I Nonparametric Case: If the density of X is known to be s-times

differentiable, the minimax rate is � n−
8s

4s+D . [2]

. mild assumptions, but consistency requires D ∈ o(log n)

. in practice, fails if D is bigger than 4-6

Research Question

I Question: Can we estimate dependence in high dimensions
without Gaussian assumptions?

I Our Answer: Yes, using a nonparanormal model!
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The Nonparanormal Distribution

I A D-dimensional random variable X taking values in XD has a

nonparanormal (or Gaussian copula) distribution, denoted

X ∼ NPN (Σ; f ) if there exist differentiable monotone functions

f1, ..., fD : X → R such that

f (X ) = (f1(X1), ..., fD(XD)) ∼ N (0,Σ).

Figure 1: Examples of nonparanormal densities.

I Two perspectives:

1. Marginal transformation of Gaussian

2. 2nd-order additive model for densities: p(x) ∝ e−f T(x)Σf (x).

I 1st-order model is independent: p(x) ∝ ew ·f (x)

Estimating Nonparanormal Mutual Information

I Basic Lemma: If X ∼ NPN (Σ; f ), then

I (X ) = −
1

2
log |Σ|, (1)

where |Σ| denotes the determinant of Σ. Hence,

1. I (X ) doesn’t depend on f .

2. we can plug an estimate of Σ into Eq. (1).

I We propose 3 distinct estimators for Σ:

. Gaussianization Estimator ÎG transforms data to have asymptotically

Gaussian marginals and then estimates the covariance directly.
. Spearman Îρ and Kendall Îτ estimators transform estimated

rank-correlation, based on the identities

Σ = 2 sin

(
π

6
ρ

)
and Σ = sin

(
π

2
τ

)
,

where ρ and τ are Spearman’s and Kendall’s rank correlation matrices.

I Σ̂G , Σ̂ρ, Σ̂τ may not be positive definite (so P
[
log |Σ̂| =∞

]
> 0).

. Regularize estimate of Σ to have minimum eigenvalue

λD(Σ̂) ≥ z > 0, where z is a tuning parameter. i.e., use

Σ̂T ,z := argmin
Σ :λD(Σ)≥z

∥∥∥Σ− Σ̂T

∥∥∥
F

for T ∈ {G , ρ, τ}.

Theoretical Results

I Theorem 1: If z ≤ λD(Σ), there exists a universal constant C s.t.

E
[(

Îρ,z − I
)2
]
≤

CD2

z2n
.

I For Gaussian X , the distribution of Î − I is independent of Σ [1]

. Quite surprising, since I →∞ as λD(Σ)→ 0!

I Theorem 2: There exists a constant Cn,D such that

inf
Î

sup
Σ :λD(Σ)≥λ

E
[(

Î − I
)2
]
≥ −Cn,D log2(λ).

Experimental Results

I We compare 5 estimators:

. Debiased (optimal) Gaussian estimator Î [1]

. Our proposed estimators ÎG ,z, Îρ,z, Îτ,z, with z = 10−3

. Nonparametric k-nearest neighbors estimator ÎKNN [3], with k = 2
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Experiment 1: If X
is Gaussian, NPN es-
timators approach Î .
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Experiment 2: If we
transform marginals,
Î diverges.
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Experiment 3: NPN
estimators are ro-
bust to outliers.
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Experiment 4: NPN
estimators (but not Î )
error depends on Σ.

Experiment details: All results are averaged over 100 IID trials. In each trial, Σ ∈ R25×25

is randomly sampled from a Wishart distribution. Experiment 2 transforms a fraction α of
dimensions according to z 7→ ez . Experiment 3 replaces a fraction β of data uniformly at
random from {−5,+5}.

Conclusions
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Figure 2: Phase diagram showing when each type of estimator is consistent.
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