Link to paper: goo.gl/GARoJH

Introduction

- Estimating dependence between variables is a fundamental subproblem in machine learning.
- Mutual information (MI) is a popular measure of dependence.
- Previous MI estimators need strong assumptions or low dimensionality.
- We propose/study nonparanormal estimators to bridge this gap.

Information Estimation

Multivariate Mutual Information: Given a D-dimensional random variable $X = (X_1, ..., X_D)$ with joint density $p = p_1 \times \cdots p_D$,

$$I(X) := \mathbb{E}_{X \sim p} \left[\log \left(\frac{p(X)}{\prod_{j=1}^{D} p_j(X_j)} \right) \right] = D_{KL} \left(p \right)$$

where D_{KL} denotes KL-divergence.

- \triangleright I(X) measures dependency/redundancy between $X_1, ..., X_D$.
- Pairwise mutual information, conditional mutual information, transfer entropy, etc. can be written in terms of *I*.
- **Information Estimation** refers to the problem of estimating I(X), given n IID samples of a random variable X.
- **Gaussian case:** If X is known to be Gaussian, the minimax mean squared error for information estimation is essentially 2D/n. [1] \triangleright consistent if $D \in o(n)$, but Gaussianity is very restrictive ▷ fails if X is heavy-tailed, multi-modal, skewed, nonlinear
- **Nonparametric Case:** If the density of **X** is known to be *s*-times differentiable, the minimax rate is $\asymp n^{-\frac{\delta^{5}}{4s+D}}$. [2]
 - ▷ mild assumptions, but consistency requires $D \in o(\log n)$ \triangleright in practice, fails if **D** is bigger than **4**-**6**

Research Question

- Question: Can we estimate dependence in high dimensions without Gaussian assumptions?
- Our Answer: Yes, using a nonparanormal model!

References

- T Tony Cai, Tengyuan Liang, and Harrison H Zhou. J. of Multivariate Analysis, 137:161–172, 2015.
- **i** Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabas Poczos, Larry Wasserman, and James M. Robins. In Advances in Neural Information Processing Systems, pages 397–405, 2015.
- **LF** Kozachenko and Nikolai N Leonenko. Problemy Peredachi Informatsii, 23(2):9–16, 1987.

Nonparanormal Information Estimation A Framework for Realistic Dependence Estimation

The Nonparanormal Distribution

 $\left|\prod_{j=1}^{D}p_{j}\right\rangle$,

A D-dimensional random variable X taking values in \mathcal{X}^D has a nonparanormal (or Gaussian copula) distribution, denoted $X \sim \mathcal{NPN}(\Sigma; f)$ if there exist differentiable monotone functions $f_1, ..., f_D : \mathcal{X} \to \mathbb{R}$ such that

 $f(X) = (f_1(X_1), ..., f_D(X_D)) \sim \mathcal{N}(0, \Sigma).$

Figure 1: Examples of nonparanormal densities.

- ► Two perspectives:
 - Marginal transformation of Gaussian
 - 2. 2^{nd} -order additive model for densities: $p(x) \propto e^{-f^{T}(x)\Sigma f(x)}$.
 - ▶ 1^{st} -order model is independent: $p(x) \propto e^{w \cdot f(x)}$

Estimating Nonparanormal Mutual Information

- **Basic Lemma:** If $X \sim \mathcal{NPN}(\Sigma; f)$, then $I(X) = -\frac{1}{2}\log|\Sigma|,$
 - where $|\Sigma|$ denotes the determinant of Σ . Hence, 1. I(X) doesn't depend on f.
 - 2. we can plug an estimate of Σ into Eq. (1).
- We propose **3** distinct estimators for Σ : Gaussianization Estimator \widehat{I}_G transforms data to have asymptotically \triangleright
 - Gaussian marginals and then estimates the covariance directly. \triangleright Spearman \hat{I}_{ρ} and Kendall \hat{I}_{τ} estimators transform estimated rank-correlation, based on the identities

 $\Sigma = 2 \sin\left(\frac{\pi}{6}\rho\right)$ and $\Sigma = \sin\left(\frac{\pi}{2}\tau\right)$, where ho and au are Spearman's and Kendall's rank correlation matrices. $\widehat{\boldsymbol{\Sigma}}_{G}, \, \widehat{\boldsymbol{\Sigma}}_{\rho}, \, \widehat{\boldsymbol{\Sigma}}_{\tau} \text{ may not be positive definite (so } \mathbb{P} \left| \log |\widehat{\boldsymbol{\Sigma}}| = \infty \right| > \mathbf{0}).$ \triangleright Regularize estimate of Σ to have minimum eigenvalue $\lambda_D(\widehat{\Sigma}) \ge z > 0$, where z is a tuning parameter. i.e., use $\widehat{\boldsymbol{\Sigma}}_{T,z} := \underset{\boldsymbol{\Sigma}: \lambda_D(\boldsymbol{\Sigma}) > z}{\operatorname{argmin}} \left\| \boldsymbol{\Sigma} - \widehat{\boldsymbol{\Sigma}}_T \right\|_F \quad \text{for} \quad T \in \{G, \rho, \tau\}.$

http://www.andrew.cmu.edu/user/sss1/

Shashank Singh and Barnabás Póczos

Machine Learning Department & Department of Statistics

Theoretical Results

Theorem 1: If $z \leq \lambda_D(\Sigma)$, there exists a universal constant C s.t. $\mathbb{E}\left[\left(\widehat{I}_{\rho,z}-I\right)^2\right] \leq \frac{CD^2}{z^2n}.$ For Gaussian X, the distribution of $\hat{I} - I$ is independent of Σ [1] ▷ Quite surprising, since $I \to \infty$ as $\lambda_D(\Sigma) \to 0!$ **Theorem 2:** There exists a constant $C_{n,D}$ such that $\inf_{\widehat{I}} \sup_{\Sigma:\lambda_D(\Sigma) \geq \lambda} \mathbb{E} \left[\left(\widehat{I} - I \right)^2 \right] \geq -C_{n,D} \log^2(\lambda).$

Experimental Results

We compare **5** estimators: \triangleright Debiased (optimal) Gaussian estimator \hat{I} [1]

Sample Size $(\log_{10}(n))$

Fraction of outliers (β) non-Gaussian Fraction (α) Experiment 1: If X Experiment 2: If we Experiment 3: NPN is Gaussian, NPN es- transform marginals, estimators are ro-

timators approach I. I diverges.

bust to outliers.

Experiment details: All results are averaged over 100 IID trials. In each trial, $\Sigma \in \mathbb{R}^{25 imes 25}$ is randomly sampled from a Wishart distribution. Experiment 2 transforms a fraction lpha of dimensions according to $z \mapsto e^z$. Experiment 3 replaces a fraction β of data uniformly at random from $\{-5, +5\}$.

Conclusions

 $g(x) = f^{T}(x)\Sigma f(x)$ $g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{x}_{\mathsf{T}}$

Figure 2: Phase diagram showing when each type of estimator is consistent.

August 8, 2017

Carnegie Mellon University

▷ Our proposed estimators $\hat{I}_{G,z}$, $\hat{I}_{\rho,z}$, $\hat{I}_{\tau,z}$, with $z = 10^{-3}$ ▷ Nonparametric k-nearest neighbors estimator \hat{I}_{KNN} [3], with k = 2

Experiment 4: NPN estimators (but not *I*) error depends on Σ .

sss1@andrew.cmu.edu