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Estimating dependence between variables is a fundamental subproblem
in machine learning.

Mutual information (MI) is a popular measure of dependence.
Previous MI estimators need strong assumptions or low dimensionality.

» We propose/study nonparanormal estimators to bridge this gap.

Information Estimation

» Multivariate Mutual Information: Given a D-dimensional random
variable X = (Xi, ..., Xp) with joint density p = p1 X -+ pp,

' (X) '\ D
1(X) : o _Iog (HJD: Pj(Xj))_ = Dk1 (PHH-:le) 7

where Dy, denotes KL-divergence.

> (X)) measures dependency/redundancy between Xi, ..., Xp.
> Pairwise mutual information, conditional mutual information,

transfer entropy, etc. can be written in terms of /.
Information Estimation refers to the problem of estimating /(X),
given n |ID samples of a random variable X.
Gaussian case: If X is known to be Gaussian, the minimax mean
squared error for information estimation is essentially 2D /n. [1]
> consistent if D € o(n), but Gaussianity is very restrictive
> fails if X is heavy-tailed, multi-modal, skewed, nonlinear

Nonparametric Case: If the density ofBX Is known to be s-times

differentiable, the minimax rate is <X n™4+D. [2]

> mild assumptions, but consistency requires D € o(log n)
> in practice, fails if D is bigger than 4-6

Research Question

» Question: Can we estimate dependence in high dimensions
without Gaussian assumptions?
» Qur Answer: Yes, using a nonparanormal model!
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The Nonparanormal Distribution

» A D-dimensional random variable X taking values in X® has a

nonparanormal (or Gaussian copula) distribution, denoted
X ~ N’PN(Z' f) if there exist differentiable monotone functions
fly .ees fp : X — R such that

f(X) = (A(X1), ..., fo(XD)) ~ N (0, X).

Figure 1. Examples of nonparanormal densities.

» Two perspectives:
1. Marginal transformation of Gaussian
2. 2"_order additive model for densities: p(x) ox e~ (Ef(x)
» 15t_order model is independent: p(x) oc e%¥(x)

Estimating Nonparanormal Mutual Information

» Basic Lemma: If X ~ N'PN(Z; f), then
1
I(X) = — log ||, (1)

where |X| denotes the determinant of . Hence,
I(X) doesn’t depend on f.

2. we can plug an estimate of 2 into Eq. (1)

» We propose 3 distinct estimators for X :

> Gaussianization Estimator TG transforms data to have asymptotically
Gaussian margmals and then estimates the covariance directly.

>  Spearman I and Kenda//l estimators transform estimated
rank- correlatlon, based on the identities

7y T
2 = 2sin (—p> and X = sin <—T> ;
6 2

where P and 7 are Spearman’s and Kendall's rank correlation matrices.

AN

> T, 2, ¥ may not be positive definite (so P [Iog \Z\ = } > 0).

> Regularize estimate of 2 to have minimum eigenvalue
Ap(X) > z > 0, where z is a tuning parameter. i.e., use

ET,Z = argmin ||X — fT for T € {G,p,T}.
> : Ap(X)>z F
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Theoretical Results

» Theorem 1: If z < )\D(Z) there exists a universal constant C s.t.

1L, — 2| < CD*
(p,z_ ) 22n

» For Gaussian X, the distribution of I — [ is independent of X [1]
> Quite surprising, since I — oo as Ap(X) — 0!
» Theorem 2: There exists a constant C, p such that

—C,.plog?(N).

P 2
inf  sup (/ _ /) >
/ Z:)\D(Z)E)\ L .

» We compare 5 estimators:
> Debiased (optimal) Gaussian estimator 1 [1]
> Qur proposed estimators IG 2, Ip 2, ITZ, with z = 103
> Nonparametric k-nearest neighbors estimator IKNN 3], with kK = 2
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Experiment 1: If X Experiment 2: If we Experiment 3: NPN Experiment 4. NPN
is Gaussian, NPN es-  transform marginals, estimators are ro- estimators (but not /)
bust to outliers. error depends on 2.

timators approach /. I diverges.

Experiment details: All results are averaged over 100 IID trials. In each trial, X € R25%25
is randomly sampled from a Wishart distribution. Experiment 2 transforms a fraction a of
dimensions according to z —> e®. Experiment 3 replaces a fraction 3 of data uniformly at

random from {—5, +5}.

Conclusions
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Figure 2: Phase diagram showing when each type of estimator is consistent.
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