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Introduction

I For a fixed α ∈ [0, 1) ∪ (1,∞), we are interested in estimating

the Rényi-α divergence

Dα(p‖q) =
1

1− α
log

∫
X

pα(x)q1−α(x)) dx,

between two unknown, continuous, nonparametric probability

densities p and q over X ⊆ Rd, using samples from each density.

I Applications of divergence estimation include

. extending machine learning algorithms designed to operate on

finite-dimensional feature vectors to the setting where inputs are

sets or distributions.
. estimating entropy and mutual information.

I Rényi-α Divergence has KL-Divergence as its α→ 1 limit case, and

is related to Tsallis-α, Jensen-Shannon, and Hellinger divergences.

I Few divergence estimators have known rates, and, to the best of our

knowledge, none have known exponential concentration bounds.

I We propose and analyze a plug-in estimator based on kernel density

estimation, for densities on the unit cube X = [0, 1]d. We prove

. the estimator is exponentially concentrated about its mean.

. for densities in a β-Hölder smoothness class with certain

boundary conditions, the bias of the estimator is bounded by

O
(

n−
β
β+d

)
, where n is the number of samples from each density.

Assumptions

Let β > 0, and let ` := bβc be the greatest integer strictly less than

β. We make the following four assumptions on the densities p and q,

and the kernel K:

I (Smoothness) All (mixed) `-order partial derivatives of p and q
exist and are (β − `)-Hölder Continuous (i.e., ∃L ∈ R such hat,

∀x, x + v ∈ X , |~i| = `,

|D~ip(x + v)− D
~ip(x)|, |D~iq(x + v)− D

~iq(x)| ≤ L‖v‖β−`2 ).

I (Boundedness) ∃κ1, κ2 ∈ R such that, ∀x ∈ X ,

0 < κ1 ≤ p(x), q(x) ≤ κ2 < +∞.
I (Boundary) All derivatives of p and q vanish at the boundary

∂X = {x ∈ X : xi ∈ {0, 1} for some i ∈ [d]}
(i.e., sup1≤|~i|≤` |D

~i(x)| → 0 as dist(x, ∂X )→ 0).

I (Kernel) The kernel K : R→ R has support in [−1, 1],∫ 1

−1
K(u) du = 1 and

∫ 1

−1
ujK(u) du = 0, ∀j ∈ {1, . . . , `}.

Mirrored Kernel Density Estimator

Given a bandwidth h, our Rényi-α divergence

estimate is computed in 3 steps:

1. Mirror data over subsets of edges of X .

2. Compute clipped kernel density estimates

p̂ and q̂ from the mirrored data, using

product kernel Kd and bandwidth h, and

clipping the kernel density estimates

pointwise below at κ1 and above at κ2.

3. Estimate Dα(p‖q) by the plug-in

estimator Dα(p̂‖q̂).

Figure : Four kernels
centered on a single data point
and its three reflected copies, in
the case d = 2.

Results: Exponential Concentration Bound

I We show that, ∀ε > 0,

P (|Dα(p̂‖q̂)− EDα(p̂‖q̂)| > ε) ≤ 2 exp
(
−C2

Vε
2n
)
,

where
CV =

|α− 1|
2CfCL‖K‖d

1

is constant in n and h.

I Main tool in proof is McDiarmid’s Inequality, by which it suffices to

bound the change in the estimate when resampling a single data

point by CV/n.

I This is achieved by combining a smoothness property of Dα with the

observation that the integral of the mirrored kernel density estimate

changes by at most 2
n

∫
[−1,1]d |Kd(u)| du.

Bias Lemma

I Bias Lemma: Writing the pointwise bias of the clipped and

mirrored kernel density as bp(x) = Ep̂(x)− p(x), we show∫
X

b2
p(x) dx ≤ Cbh2β.

. For somewhat small h and large β (in particular, h ≤
√

1
3d1/r and

β ≥ 6d + 2 suffices), one can show Cb ≤ 3L.
. Away from the boundary of X (i.e., in [h, 1− h]d), there is no

boundary bias, and so we simply cite well-known results in kernel

density estimation, using the assumed symmetry properties of the

kernel.
. For x near (within h of) the boundary of X , we combine the

Smoothness and Boundary Conditions via a Taylor bound to

derive a pointwise bound bp(x) ≤ Cbh.

Results: Convergence Rate

I We show there exists CB ∈ R (constant in n and h) such that

|EDα(p̂‖q̂)− Dα(p‖q)| ≤ CB

(
hβ +

1

nhd

)
.

I Proven by making a second-order Taylor estimate and then using

Hölder’s Inequality to reduce terms to the Bias Lemma and the

integrated mean squared error of a standard kernel density estimator.

Discussion

I The exponential concentration bound gives a bound on the variance

of the estimator:
V[F(p̂1, . . . , p̂k)] ≤ C2

Vn−1.

I This does not depend on h, so pick h to minimize the bias bound.

. Asymptotically optimal h is h � n−
1

β+d, so bias bound is

O
(

n−
β
β+d

)
.

I Hence MSE is O(n−
β
β+d + n−1), which is the parametric rate

O(n−1) if β ≥ d and O(n−
β
β+d) otherwise.

I Kernel assumptions for the bias bound necessitate ‖K‖1 > 1 when

β ≥ 2 and CV includes ‖K‖d
1, which is exponential in d.

. Lower bounds in d are unknown; whether dependence is

necessarily exponential is an important open problem.

Experimental Results on Synthetic Data

I ~µ1 =

0.3
0.3
0.3

 , ~µ2 =

0.7
0.7
0.7


I Σ =

0.2 0 0
0 0.2 0
0 0 0.3


I p1 = N (~µ1,Σ), p2 =
N (~µ2,Σ)

I In each trial, n points were

drawn from p1 and p2

restricted to [0, 1]3. Dα(p̂‖q̂)
was computed from the

samples and Dα(p1‖p2) was

computed directly.

Mean squared error and standard

deviation of our estimator were

computed from 100 trials and

plotted below.

Figure : Log-log plot of mean squared
(computed over 100 trials) for various
sample sizes n, alongside our theoretical
bound. Error bars indicate standard
deviation of estimator over 100 trials.
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