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Introduction

» Forafixeda € [0,1) U (1, 00), we are interested in estimating
the Rényi-a divergence

D (plla) = -——og [ p"(x)a’~(x)) dx.

between two unknown, continuous, nonparametric probability

densities p and q over X C RY, using samples from each density.

Applications of divergence estimation include

> extending machine learning algorithms designed to operate on
finite-dimensional feature vectors to the setting where inputs are
sets or distributions.

> estimating entropy and mutual information.

Rényi-a Divergence has KL-Divergence as its o — 1 limit case, and
is related to Tsallis-¢, Jensen-Shannon, and Hellinger divergences.

Few divergence estimators have known rates, and, to the best of our
knowledge, none have known exponential concentration bounds.

We propose and analyze a plug-in estimator based on kernel density
estimation, for densities on the unit cube X = [0, 1]9. We prove

> the estimator is exponentially concentrated about its mean.
> for densities in a 3-Holder smoothness class with certain
boundary conditions, the bias of the estimator is bounded by

__B_ : :
O (n ﬂ+d>, where n is the number of samples from each density.

Assumptions

Let 3 > 0, and let £ := | 3| be the greatest integer strictly less than
3. We make the following four assumptions on the densities p and q,

and the kernel K:

» (Smoothness) All (mixed) £-order partial derivatives of p and q
exist and are (3 — £€)-Holder Continuous (i.e., L € R such hat,
Vx,x +v € X, |i| =4,

D'p(x + v) — D'p(x)|, [D'g(x + v) — Diq(x)| < L|jv||3 ).
» (Boundedness) dki, k2 € R such that, Vx € X,
0 < k1 < p(x),q(x) < K2 < +o0.
» (Boundary) All derivatives of p and q vanish at the boundary
OX = {x e X :x; € {0,1} for somei € [d]}
(i.e., sup; -, |D'(x)| — 0 as dist(x, dX) — 0).

» (Kernel) The kernel K : R — R has support in [—1, 1],

1 1
/ K(u)du =1 and / wWK(u)du=0, Vje{l,...,~¢}.
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Mirrored Kernel Density Estimator

Given a bandwidth h, our Rényi-a divergence

estimate is computed in 3 steps:
1. Mirror data over subsets of edges of X.
2. Compute clipped kernel density estimates

p and q from the mirrored data, using
product kernel K4 and bandwidth h, and
clipping the kernel density estimates

Figure . Four kernels
centered on a single data point
and its three reflected copies, in
the case d = 2.

pointwise below at K1 and above at K».
. Estimate D,(p||q) by the plug-in
estimator D, (p||G).

Results: Exponential Concentration Bound

» We show that, Ve > 0
P (IDa(plld) — ED.(B]1d)] > €) < 2exp (—C3en),

where o — 1]

Cy =
2C:C,||K||§

Is constant in n and h.

Main tool in proof is McDiarmid's Inequality, by which it suffices to
pound the change in the estimate when resampling a single data
hoint by Cy/n.

This is achieved by combining a smoothness property of D, with the

observation that the integral of the mirrored kernel density estimate
2 d
changes by at most £ [;_; 114 [K“(u)| du.

Bias Lemma

» Bias Lemma: Writing the pointwise bias of the clipped and
mirrored kernel density as by(x) = Ep(x) — p(x), we show

2 203
/X bp(X) dx S Cbh o

> For somewhat small h and large 3 (in particular, h < ‘/3d11/r and

B > 6d + 2 suffices), one can show C, < 3L.

> Away from the boundary of X (i.e., in [h, 1 — h]9), there is no
boundary bias, and so we simply cite well-known results in kernel
density estimation, using the assumed symmetry properties of the
kernel.
For x near (within h of) the boundary of X', we combine the
Smoothness and Boundary Conditions via a Taylor bound to
derive a pointwise bound by(x) < Cph.
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Results: Convergence Rate

» We show there exists Cg € R (constant in n and h) such that

- 1
[ED.(P]|G) — Da(plla)| < Cg (hﬁ | nhd> °

» Proven by making a second-order Taylor estimate and then using

Holder's Inequality to reduce terms to the Bias Lemma and the
integrated mean squared error of a standard kernel density estimator.

Discussion

The exponential concentration bound gives a bound on the variance
of the estimator:
A A 2 _—1
VIF(P1s. .5 Pk)] < Cyn™".

This does not depend on h, so pick h to minimize the bias bound.
1

> Asymptotically optimal h is h <X n 58+d  so bias bound is

O (n_%)
Hence MSE is O(n_% - n_l), which is the parametric rate
O(n—1) if 3 > d and O(n_%) otherwise.
Kernel assumptions for the bias bound necessitate ||K|[1 > 1 when
3 > 2 and Cy includes ||K]||{, which is exponential in d.

> Lower bounds in d are unknown; whether dependence is
necessarily exponential is an important open problem.

Experimental Results on Synthetic Data
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bound. Error bars indicate standard
deviation of estimator over 100 trials.

samples and D, (p1||p2) was
computed directly.
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