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Contents

1 Introduction 3
1.1 Formal Problem Types Considered . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Organization of this Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 General Setting & Notation of This Proposal 4

3 Alternative Losses for Distribution Estimation 5
3.1 General Setup & Background . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Classical density estimation . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 More general losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 From Implicit to Explicit Distribution Estimation . . . . . . . . . . . 11

4 Distribution Functional Estimation 11
4.1 Applications of Density Functional Estimation . . . . . . . . . . . . . . . . . 12
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Recent Work on Density Functional Estimation . . . . . . . . . . . . . . . . 13
4.4 Plugging in a Boundary-Corrected Kernel Density . . . . . . . . . . . . . . . 14

4.4.1 Boundary Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.5 Bias-Corrected k-Nearest Neighbor Estimators . . . . . . . . . . . . . . . . . 16
4.5.1 k-NN density estimation and plug-in functional estimators . . . . . . 17
4.5.2 Fixed-k functional estimators . . . . . . . . . . . . . . . . . . . . . . 18
4.5.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.6 Estimation of Sobolev Quantities and other Quadratic Fourier Functionals . 19
4.7 Nonparanormal Information Estimation . . . . . . . . . . . . . . . . . . . . . 21

4.7.1 Multivariate Mutual Information and the Nonparanormal Model . . . 21
4.8 Condensed Summary of Results on Density Functional Estimation . . . . . . 23

4.8.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.9 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.9.1 Extending Results to Besov Spaces . . . . . . . . . . . . . . . . . . . 26
4.9.2 Applications to Statistical Hypothesis Testing . . . . . . . . . . . . . 27

5 Proposed Timeline 28

1



Abstract

This thesis studies several theoretical problems in nonparametric statistics and
machine learning, mostly in the areas of estimating or generating samples from a prob-
ability distribution, estimating a real-valued functional of a probability distribution, or
testing a hypothesis about a probability distribution, using IID samples from that dis-
tribution. For distribution estimation, we consider a large, novel class of losses, under
which high-dimensional nonparametric distribution estimation is more tractable than
under the usual L2 loss. These losses have with connections with recent methods such
as generative adversarial modelling, helping to explain why these methods appear to
perform well at problems that are intractable from traditional perspectives of nonpara-
metric statistics. Our work on density functional estimation focuses on several types
of integral functionals, such as information theoretic quantities (entropies, mutual in-
formations, and divergences), measures of smoothness, and measures of (dis)similarity
between distributions, which play important roles as subroutines elsewhere in statistics,
machine learning, and signal processing. Finally, we propose to study some applica-
tions of these density functional estimators to classical hypothesis testing problems
such as two-sample (homogeneity) or (conditional) independence testing. A consistent
theme is that, although traditional nonparametric density estimation is intractable in
high-dimensions, several equally (or more) useful tasks are relatively more tractable,
even with similar or weaker assumptions on the distribution.
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1 Introduction

This thesis studies several different problems in nonparametric statistics. As such, we begin
with a brief formal description of the problems considered.

1.1 Formal Problem Types Considered

In this section, we briefly describe, at a high-level, the formal structure that defines the
problems we consider in this thesis.

Suppose we observe n IID samples X1, ..., Xn
IID∼ P from an unknown probability dis-

tribution P lying in a nonparametric class P of distributions. This thesis addresses special
cases of several basic problems in statistics:

1. Distribution Estimation: Given a loss function ` : P × P → [0,∞), we want
to estimate the entire distribution P . That is, we want to compute a (potentially

randomized) function P̂ : X n → P that has small worst-case risk under `:

sup
P∈P

E
X1,...,Xn

IID∼ P

[
`
(
P, P̂ (X1, ..., Xn)

)]
.

2. Implicit Distribution Estimation (Sampling): Given a loss function ` : P ×P →
[0,∞) and a “latent” random variable Z with a known distribution on a space Z, we
want to learn a transformation f such that the distribution of f(Z) is close to P . That

is, we want to compute a function f̂ : X n×Z → X such that, if Pf̂(X1,...,Xn,Z)|X1,...,Xn
∈

P is the conditional distribution of f̂(X1, ..., Xn, Z) given X1, ..., Xn, then

sup
P∈P

E
X∼P

[
`
(
P, Pf̂(X1,...,Xn,Z)|X1,...,Xn

)]
.

3. Distribution Functional Estimation: Given a (known, nonlinear) functional F :
P → R, we want to estimate its value F (P ) at the unknown distribution P . That is,

we want to compute a (potentially randomized) function F̂ : X n → R that has small
worst-case L2 risk:

sup
P∈P

E
X1,...,Xn

IID∼ P

[(
F (P )− F̂ (X1, ..., Xn)

)2
]
.

4. Hypothesis Testing: Given a partition P = P0 ∪ P1 into two disjoint subsets, we
would like to determine whether P ∈ P0 or P ∈ P1, under a constraint on the Type 1
error probability. That is, given an α ∈ (0, 1), we would like to compute a test statistic

P̂ : X n → {P0,P1} that has high power

inf
P∈P

Pr
X1,...,Xn

[
P̂ (X1, ..., Xn) = P1

]
3



whenever P ∈ P1, subject to

sup
P∈P0

Pr
X1,...,Xn

IID∼ P

[
P̂ (X1, ..., Xn) = P1

]
≤ α.

In each of the above problems, two parameters need to be specified to give a well-defined
statistical problem. The first is the hypothesis class P of distributions under consideration.
Second, each problem has its own specific parameters that need to be fixed: the functional
F , the loss `, the latent variable Z, or null hypothesis P0.

1.2 Organization of this Proposal

We begin, in Section 2, by establishing some common notation and context that will be used
throughout this proposal.

Section 3 motivates and discusses our past and proposed work on distribution estimation
under alternative losses, beginning with a discussion of classical density estimation and its
shortcomings in Section 3.1, continuing with two threads along which we have pursued this
topic in Section 3.2, and finishing with proposed work that unifies these two threads in
Section 3.3. It also discusses relevant connections between implicit and explicit distribution
estimation.

Section 4 discusses our past and proposed work on distribution functional estimation.
Since this work involved four relatively distinct projects, after a brief summary of the state-
of-the-art in distribution functional estimation, we discuss each project in its own section
(Sections 4.4, 4.5, 4.6, and 4.7). Since our results on distribution functional estimation are
quite many, in Section 4.8 we give a condensed summary of the results in a tabular format.
We then end this section with a discussion of proposed work, which unifies the four different
projects, including proposed study of applications to statistical hypothesis testing.

Section 5 gives a timeline outlining when I expect to complete each piece of proposed
work.

2 General Setting & Notation of This Proposal

All problems considered in this thesis begin by observing n IID observations X1, ..., Xn
IID∼ P

from a probability distribution P on a sample space X . P is unknown, but is assumed to lie in
a family P of probability distributions. The sample space X and class P of distributions will
vary from problem to problem; examples range from the entire class of all Borel probability
distributions on an arbitrary metric space X to smoothness classes (e.g., balls in Sobolev,
Hölder, Besov, or reproducing kernel Hilbert spaces) over the d-dimensional Euclidean unit
cube X = [0, 1]d. In some cases, we will endeavor to unify several of these settings, which
are typically analyzed using different approaches, under a single analysis framework. P is
typically assumed to be known, although we also sometimes consider the harder (“adaptive”)
case in which P has a known form but also has some unknown parameters (such as a
smoothness index or intrinsic dimension).
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Our work generally focuses on point estimation in the minimax statistical framework1

because this furnishes a general and provable notion of optimality of estimators, although
we occasionally also consider construction of confidence intervals.

Finally, it is worth noting that all results in this thesis will be derived with explicit forms
for leading “constant factors”; however, for brevity, in this proposal, we omit the values of
these constant factors.

3 Alternative Losses for Distribution Estimation

In this section, we motivate and study a novel theoretical framework for estimating a prob-
ability distribution (with or without a density). The main novelty is in considering a larger
class of losses, besides the L2 (or Lp) loss typically considered in classical nonparametric
density estimation. As a result, this framework subsumes that of classical nonparametric
density estimation, but also allows a unified analysis of several much more general problems.

Importantly, these losses allow us to meaningfully estimate distributions that are not
absolutely continuous (with respect to a base measure), or even sample spaces where no
natural base measure exists.

Generative adversarial networks (GANs) and variational autoencoders (VAEs), which
have become popular tools for implicit generative modeling (the problem of learning a trans-
formation from a known latent distribution to an unknown sampling distribution given sam-
ples from the latter) implicitly use losses similar to those we consider. Hence, we show, our
results have implications for these methods.

Finally, since our framework allows for distributions lacking densities, it naturally en-
compasses the problem of estimating a distribution supported on a manifold. Hence, we
conclude this section by proposing future work that generalizes and unifies the problems of
manifold learning and of learning a density with respect to the volume form on a manifold.

3.1 General Setup & Background

Density estimation, along with regression, is one of the most well-studied problems in non-
parametric statistics. As such, we cannot review the literature here, and discuss only key
classical results and the recent results most relevant to our work. More thorough discussion
can be found in Tsybakov [2008] and Wasserman [2006].

Fix a class P of probability distributions on a sample space X . Suppose that we observe

n IID samples X1, ..., Xn
IID∼ P from some unknown distribution P ∈ P .

Given a loss function ` : P × P → [0,∞], we are interested in constructing an estimator

P̂ : X n → P of P that minimizes the risk

R(P, P̂ ) := E
X1,...,Xn

IID∼ P

[
`
(
P, P̂ (X1, ..., Xn)

)]
.

1That is, we seek estimators that minimize worst-case (over P ∈ P) expected (over X1, ..., Xn) error.
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The minimax quantity
M(P , `) := inf

P̂ :Xn→P
sup
P∈P

R(P, P̂ ),

of interest depends on the class P of distributions (which implicitly encodes dependence on
the sample space X ) and the loss `. In the sequel, except where this causes ambiguity, we

abbreviate P̂ = P̂ (X1, ..., Xn). Typically, the loss ` is strong enough that, for any P,Q ∈ P ,
`(P,Q) = 0 implies P = Q. Since, in the nonparametric setting, P is infinite-dimensional,
this makes density estimation challenging both computationally and statistically, as obtain-
ing a consistent estimate P̂ requires both the representation of P̂ in memory and the number
of parameters being estimated to grow unboundedly with the sample size n. As a result, the
computational complexities of most methods are super-linear with n (although O(n log n)
is often possible), and statistical convergence rates are typically strictly slower than the
“parametric” rate n−1/2.

3.1.1 Classical density estimation

The vast majority of work in nonparametric statistics has focused on the case where every
Q ∈ P is absolutely continuous (i.e., Q � µ) and hence has a density p with respect to a
given base measure µ on the sample space X (e.g., the Lebesgue measure when X ⊆ Rd).
Moreover, the loss ` is almost always taken to be the Lp distance

`p(P,Q) =

(∫
X

(p(x)− q(x))p dµ(x)

)1/p

, (1)

and mostly with p = 2 [Wasserman, 2006, p. 57]. 2

This significantly simplifies analysis because one can study distribution estimation point-
wise on X , as well as rely on the structure (e.g., the existence of an orthonormal basis) of
the function space L2. For simplicity, the sample space X is usually taken to be Rd or the
unit cube [0, 1]d, and the class P is typically taken to be a ball in a smooth function space,
such as a Hölder, Sobolev, or Besov space. For Hölder or Sobolev classes with smoothness
index s, minimax rates are typically

M (Cs, ‖ · − · ‖L2) �M (Hs, ‖ · − · ‖L2) = n−
s

2s+d � n−1/2.

3.2 More general losses

The assumption of absolute continuity can be quite limiting, as it excludes structured distri-
butions such as those supported on manifolds or other low-dimensional subspaces. (Indeed,

2The Kullback-Leibler (KL) divergence has also been used as a loss. However, this is most natural when
P is a (potentially non-parametric) exponential family [Wainwright et al., 2008, Sriperumbudur et al., 2017];
otherwise, since KL divergence is quite sensitive to tails of the distribution, deriving uniform convergence
rates often involves assuming that p is lower bounded away from 0 (see Assumption (LB) in Section 4.8.1),
in which case KL divergence becomes asymptotically equivalent to L2 loss anyway (as one can easily check
via the fact that − log(1 + x) ≤ x2 − x for all x ≥ −0.5).
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more generally, the assumption of smoothness directly competes with concentration of the
distribution, even though both are typically desirable properties.) Moreover, the widespread
use of L2 loss is motivated primarily by simplicity of analysis, rather than any intrinsic
quality of L2 loss as a performance measure. We consider two main alternative classes of
losses: Wasserstein (optimal transport) distances and integral probability metrics (IPMs;
a.k.a., adversarial losses).

Wasserstein distances:3 Fix a metric sample space (X , ρ). Given two probability
distributions P and Q on X , the (r-)Wasserstein distance Wr(P,Q) between P and Q is
defined by

Wr(P,Q) = inf
µ∈Π(P,Q)

(
E

(X,Y )∼µ
[ρr(X, Y )]

)1/r

,

where Π(P,Q) is the set of possible couplings between P and Q (i.e., the set of probability
distributions over X × X having P and Q as marginals). W1(P,Q) can be interpreted as
the average distance (under ρ) that mass must be transported to transform the distribution
P into the distribution Q, according to the most efficient possible transportation scheme.
Wr(P,Q) generalizes to exponential weightings; the case r = 2 is especially fruitful because
several important problems, such as K-means, PCA, and their generalizations, can be easily
expressed as distribution estimation under W2 loss, for an appropriate class P of distribu-
tions. As the central quantities in the field of optimal transport theory, the metrics Wr have
been extensively studied in a number of contexts; see Villani [2008] for comprehensive re-
view of the mathematical theory, although there does not yet exist a review of the numerous
recent applications in machine learning and statistics.

More relevant to our work, there has been a substantial line of work, beginning with that
of Dudley [1967, 1969] and continuing with Dobrić and Yukich [1995], Boissard et al. [2014],
Fournier and Guillin [2015], Weed and Bach [2017], and Lei [2018], among others, studying
the mean convergence of the empirical distribution

Pn :=
1

n

n∑
i=1

1{Xi}

to the true distribution P , in Wasserstein distance (i.e., the rate at which E[W r
r (P,Q)]→ 0.

When the sample space X = Rd, the key problem parameters determining convergence rates
are the exponent r, the dimension d, and the concentration of the distribution P , in terms
of the number of its finite moments; specifically, Fournier and Guillin [2015] showed

E
X1,...,Xn

IID∼ P

[W r
r (P, Pn)] ∈ O

(
n−1/2 + n−r/d + n

p−q
q

)
. (2)

Weed and Bach [2017] considered the case of an arbitrary totally bounded metric space
(X , ρ), in terms of the covering numbers N(X , ρ; ε) of the space. The general upper bound

3The Wasserstein metric has been variously attributed to Monge, Kantorovich, Rubinstein, Gini, Mallows,
and others; see Chapter 3 of [Villani, 2008] for detailed history.
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in terms of covering numbers is too complex to state here, but the main consequence of
interest is that, under several different notions of dimension, if X is a d-dimensional set,
then the convergence rate is of order

E
X1,...,Xn

IID∼ P

[W r
r (P, Pn)] ∈ O

(
n−1/2 + n−r/d

)
.

Importantly, this means that when X is a low-dimensional set embedded in a high-dimensional
space RD, the convergence rate in Wasserstein distance depends only on the intrinsic dimen-
sion d, rather than the ambient dimension D.

In our paper Singh and Póczos [2018], we extended the results of Weed and Bach [2017]
in two main ways. First, we considered the case of an unbounded metric space X , making
generalized finite-moment assumptions (see Assumption (`-MM) in Section 4.8.1); we then
proved the same upper bound (2) shown for the case X = Rd by Fournier and Guillin [2015].
Second, whereas prior work only studied the convergence of the empirical distribution Pn
to P , it remained unclear whether another estimator P̂ might converge more quickly; we
proved a minimax lower bound, in terms of the packing number of (X , ρ), that implies, in
many cases, that no estimator can converge at a faster rate than the empirical distribution.

The key feature of this analysis is that, under Wasserstein loss, the minimax rate of
distribution estimation depends not on the ambient dimension D of the data, but rather on
the intrinsic dimension d of the distribution P . Often, such as when the data lie along a
low-dimensional manifold, d� D, and so a much faster rate of convergence can be achieved.
This kind of observation is not possible in the classical density estimation framework. More-
over, since the estimator is simply the empirical distribution, this rate is achieved completely
adaptively; no hyperparameter tuning or knowledge of d is required, resulting in a compu-
tationally efficient and realistic estimator.

Integral probability metrics (IPMs): Suppose F is a class of bounded4, measurable
functions on X . The F -IPM ρF : P × P → [0,∞) is defined for all P,Q ∈ P by

ρF(P,Q) := sup
f∈F

∣∣∣∣ E
X∼P

[f(X)]− E
X∼Q

[f(X)]

∣∣∣∣ . (3)

ρF has also been called an adversarial loss, because f can be interpreted as the linear feature
that an adversary (such as the discriminator in a generative adversarial network) would use
to distinguish the distributions P and Q.

By choosing the class F appropriately, one can use the form (3) to encode a huge class
of (pseudo)metrics on probability distributions, including Lp, Sobolev, MMD, 1-Wasserstein
(a.k.a. Kantorovich-Rubenstein), total variation, Kolmogorov-Smirnov, and Dudley metrics.
In fact, IPMs are in fact rather classical objects in empirical process theory and statistical
learning theory, and, in the case that P is the family of all probability distributions on
X , there exist rich theories of convergence rates under IPMs (for example those based on

4The boundedness assumption can be weakened for some classes P, but is needed in general to ensure we
do not subtract ∞−∞ in Equation (3).
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covering numbers [Dudley, 1967] or the Vapnik-Chervonenkis dimension [Vapnik, 2013] of
F).

However, when P is a more interesting class of distributions, such as a smoothness class,
the results obtained from these classical methods become loose [Liang, 2017]. Recently,
Liang [2017] studied the case where both F and P are s- and t-Sobolev balls, respectively,

showing that a (well-tuned) orthogonal series estimate P̂ of P converges at the rate

E
X1,...,Xn

[
ρF

(
P, P̂

)]
. n−

s+t
2(s+t)+d ,

often much faster than the rate of

E
X1,...,Xn

[ρF (P, Pn)] . n−
s
d ,

given for the empirical distribution by classical theory.
In our paper Singh et al. [2018b], we studied the minimax rate for quite general classes

P and F defined in terms of standard sequence space representations. We showed that
the upper bound of Liang [2017] for the Sobolev case is loose and that the (strictly faster,
for t > 0) minimax rate (achieved using the same orthogonal series estimate, albeit with a
different tuning) is

M
(
Ht, ρHt

)
� n−

s+t
2t+d + n−1/2.

We also showed that the optimal tuning for this problem is the same as under the L2 loss,
allowing us to construct a minimax estimator that adapts to unknown t, based on methods
for L2 loss. Finally, we established rates for a number of other classes F and P . For
example, we showed (for the first time, it appears) that balls in reproducing kernel Hilbert
spaces with translation-invariant kernels in L2 are n−1/2-uniform Glivenko-Cantelli classes;
i.e., even when P is the class of all probability distributions on X , if F is a ball in such an
RKHS, then convergence of the empirical distribution in the IPM ρF is of the parametric
order � n−1/2.

3.3 Future Work

Our works described above intersect when F is the class of 1-Lipschitz functions on X (so
that ρF = W1) and P is the class of all distributions on the unit cube X = [0, 1]d. Starting
from this case, the results for Wasserstein distance dictate performance when we change
the sample space X and the results for IPMs dictate the results when we add smoothness
constraints to P . Is it possible to combine these results? Of particular interest, is there
a framework of smooth distribution estimation that does not require the distribution to be
absolutely continuous with respect to Lebesgue measure (but perhaps with respect to another
unknown measure, such as the volume measure on an unknown d-dimensional manifold
embedded in [0, 1]D)?

One might conjecture that, if we could formulate such a model, we could obtain a minimax

convergence rate of � n−
s+t
2t+d , much faster than both the � n−

s
d rate given by the results for

Wasserstein distances and the � n−
s+t

2t+D rate given by the results for IPMs.
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To study this, we propose to study distribution estimation (under Wasserstein loss) in a
smooth latent variable model ; specifically, we assume X is generated according to X = f(Z),
where Z is a random variable with a known, nice (e.g., Gaussian or uniform) distribution
and f : Z ⊆ Rd → X ⊆ RD is an unknown smooth function.

We can then ask two questions:

1. In implicit distribution estimation or sampling, we ask whether we can produce
a function f̂ : Z → X such that the distribution of f̂(Z) is similar to that of f(Z).

2. In explicit distribution estimation, we ask whether we can compute a distribution
P̂ ∈ P that is close to the distribution Pf(Z) of f(Z).

As we discuss briefly in the next subsection, under mild conditions, implicit and explicit
distribution estimation are statistically equivalent (in that a solution to either yields a solu-
tion to the other with the same convergence rate). Both problem are closely related to, but
distinct from, several well-studied problems in nonparametric statistics.

First, although the goal in this task is a form of function approximation, this problem is
in some ways harder, and in other ways easier, than the problem of nonparametric regression.
On one hand, the loss functionW r

r is relatively weak, and there may be many globally optimal

f̂ ; on the other hand, since we never observe the latent variables Z1, ..., Zn that generated the
data X1 = f(Z1), ..., Xn = f(Zn), the problem is unsupervised, and it is unclear, for example,
how to perform cross-validation. Given this similarity, it may also be interesting to explore a
hypothesis class, recently proposed by Schmidt-Hieber [2017] for nonparametric regression,
in which f is a composition of many smooth functions; in this case, Schmidt-Hieber [2017]
showed that sparsely-connected deep ReLU networks are nearly minimax optimal, whereas
all linear wavelet regressors are sub-optimal by a factor polynomial in n.

Second, this problem is also closely related to manifold learning, in which one assumes
high-dimensional data are drawn (noisily) from an embedded low-dimensional manifold,
which we seek to estimate (e.g., by estimating a local chart, such as φ). There are two main
differences from prior work in this area. First, the support of X need not be a well-behaved
manifold, because we assume only that φ is smooth, not that it is a diffeomorphism (i.e.,
we do not require φ to be locally invertible, let alone have a smooth inverse). Second, our
goal is to estimate the distribution PX , rather than its support; in particular, in contrast to
manifold learning, we are not strongly concerned with areas of low probability mass. This is
implicit in our choice of Wasserstein loss, rather than the Hausdorff distance typically used
as the loss in manifold learning.

It is worth noting that, when the manifold itself is known a priori (e.g., for structured
data, such as the space of symmetric matrices), there has been work on estimating a density
with respect to the manifold’s volume measure. In this case, one can generalize the Fourier
transform to functions on the manifold; using this, one can then generalize conventional
(Hilbert-Sobolev) smoothness assumptions, L2 loss, and kernel density estimation to the the
manifold Asta [2014]. However, in our case, the manifold is unknown, making this elegant
but highly-structured approach infeasible.
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3.3.1 From Implicit to Explicit Distribution Estimation

In our paper Singh et al. [2018b] on distribution estimation under IPMs, we gave conditions
under which upper bounds for implicit generative modeling imply upper bounds (of the same
rate) for explicit generative modeling. The conditions are as follows:

1. The loss satisfies the triangle inequality.

2. We can draw arbitrarily many IID samples of Z.

3. There exists an explicit estimator P̂ that is uniformly consistent over the set of possible
values taken by the implicit estimator ({Pf̂(x1,...,xn;Z) : x1, ..., xn ∈ X}).

Are these assumptions satisfied? Clearly, the Wasserstein distance satisfies the triangle
inequality, and by construction, it is easy to draw latent random variables; the only question
is about condition 3. In the case of Wasserstein metric, one can actually show that condition
3. holds; the empirical distribution itself is a uniformly consistent distribution estimator.
This is a bit strange; the empirical distribution based on the original samples X1, ..., Xn is
sub-optimal, as it does not benefit from smoothness, but, by supplementing with data from
an appropriate implicit estimator, we can bias the estimator towards our smoothness prior.

Computationally, this is quite unsatisfying, because the explicit distribution estimate,
far from compressing the data, has actually significantly expanded the representation of the
data! We leave with an open question: Does there exist a computationally efficient explicit
distribution estimator P̂ under the latent variable model of smoothness?

4 Distribution Functional Estimation

Distribution functional estimation involves estimating the value of a (known) functional
F : P → R of the distribution at P . Note that, in the particular case that F is linear and
bounded, under mild assumptions, there exists a function f : X → R such that

F (P ) = E
X∼P

[f(X)] ,

and hence the empirical mean F̂ (P ) := 1
n

∑n
i=1 f(Xi) is usually a good estimator. While

one can find open questions even in this relatively simple domain (e.g., how to perform
robust, computationally efficient estimation under sparsity constraints [Du et al., 2017a]),
here we are interested in the more challenging setting where F is non-linear. The nonlinear
functional F of interest can be quite general, and a selection of functionals of interest is
given in Table 1; typically what is required is that F is smooth over P (e.g., in the sense of
having well-behaved Fréchet derivatives).

A simple (univariate) example of F : P → R is the (differential) Shannon entropy

F (P ) = − E
X∼P

[
log

(
dP

dµ

)]
,
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where µ is some (known) base measure (and P is such that Q � µ for every Q ∈ P),
but our framework will also apply to multivariate functionals, such as the KL divergence
F : P × P → R given by

F (P,Q) = − E
X∼P

[
log

(
dP

dµ

)]
.

The first is a semiparametric problem, in which the true probability distribution is as-
sumed only to lie in a large nonparametric class (e.g., a smoothness class), but the estimand
is a univariate quantity. As such, convergence rates are typically faster than those for density
estimation, but may often be slower than the parametric rate of � n−1 (in mean squared
error).

The classes of distribution functionals that can be considered, as well as the assumptions
that can be made on the distribution P , are quite diverse; as such we do not list them all
here, but a diverse sample is given in Table 1.

4.1 Applications of Density Functional Estimation

Estimates of dissimilarity functionals can be directly used for nonparametric goodness-of-fit,
independence, and two-sample testing [Anderson et al., 1994, Dumbgen, 1998, Ingster and
Suslina, 2012, Goria et al., 2005, Pardo, 2005, Chwialkowski et al., 2015]. They can also by
used to construct confidence sets for a variety of nonparametric objects [Li, 1989, Baraud,
2004, Genovese and Wasserman, 2005], as well as for parameter estimation in semi-parametric
models [Wolsztynski et al., 2005]. Estimates of dependence functionals can be directly used
for structure learning [Chow and Liu, 1968, Liu et al., 2012] and feature selection [Peng
et al., 2005] and optimal error estimation [Moon et al., 2015] in supervised learning.

In machine learning, Sobolev-weighted distances can also be used in transfer learning [Du
et al., 2017b] and transduction learning [Quadrianto et al., 2009] to measure relatedness be-
tween source and target domains, helping to identify when transfer can benefit learning.
Semi-inner products can be used as kernels over probability distributions, enabling gener-
alization of a wide variety of statistical learning methods from finite-dimensional vectorial
inputs to nonparametric distributional inputs [Sutherland, 2016]. This distributional learning
approach has been applied to many diverse problems, including image classification [Póczos
et al., 2011, Póczos et al., 2012], galaxy mass estimation [Ntampaka et al., 2015], ecological
inference [Flaxman et al., 2015, 2016], aerosol prediction in climate science [Szabó et al.,
2015], and causal inference [Lopez-Paz et al., 2015]. Finally, it has recently been shown that
the losses minimized in certain implicit generative models can be approximated by Sobolev
and related distances [Liang, 2017]. Further applications of these quantities can be found
in [Principe, 2010].

4.2 Related Work

Perhaps the most central results in the theory of functional estimation are those of Birgé and
Massart [1995], Laurent et al. [1996] for the case of twice Fréchet-differentiable functionals
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F ; for distributions P having a density p in the Hölder class Cs, they established a minimax

rate of order � n−
8s

4s+d + n−1 in mean squared error. This means that the parametric rate

� n−1 is achieves when s ≥ d/4, and the slower rate of � n−
8s

4s+d holds otherwise. For
quadratic functionals (i.e., those that can be written in the form

F (P ) =
∑
z∈Z

azP̃
2
z (4)

where Z is some countable index set, P̃z := EX∼P [φz(X)] for some family {φz}z∈Z of bounded
functions, and {az}z∈Z is a family of real-valued weights) such as L2, Sobolev, or RKHS
inner products, norms, and distances, the optimal rate can usually be achieved using an
appropriately tuned plug-in or basis thresholding estimator [Fan, 1991, Cai et al., 2005,
Singh et al., 2016]. For more general functionals, minimax convergence rates are almost
always achieved by correcting plug-in estimates via the von Mises expansion of the functional
F [Krishnamurthy et al., 2014, Kandasamy et al., 2015]. Informally, the idea is to expand
F (p) as

F (p) = F (p̂) + 〈∇F (p̂), p− p̂〉L2 +
〈
p− p̂, (∇2F (p̂))p− p̂

〉
L2 +O

(
‖p− q‖3

L2
)
, (5)

where ∇F (p̂) and ∇2F (p̂) are the first and second order Frechet derivatives of F at p̂. In
the expansion (5), the first term is a simple plug-in estimate, and the second term is linear
in p, and can therefore be estimated easily by an empirical mean. The remaining term is
precisely a quadratic functional of the density, of the form Equation (4), and so, as noted
above, a simple plug-in estimate achieves the minimax rate. Finally, one can show that the
‖p−q‖3

L2 term is often negligible. Thus, summing the three estimated terms gives a minimax
rate-optimal estimator.

In the adaptive case, where the smoothness index s is not known beforehand, the same
rate of convergence can be achieved using Lepski’s method [Mukherjee et al., 2015, 2016]
or, in the case of quadratic functionals, using wavelet thresholding [Cai et al., 2006]. We
do not know of a method based on wavelet-thresholding for more general functionals, which
motivates one of the research topics proposed later in this document.

4.3 Recent Work on Density Functional Estimation

Density functional estimation is quite an active area of research in the statistics, machine
learning, and signal processing communities, and we therefore, in this section, briefly review
recent advances.

Confidence Intervals: While the vast majority of work in density functional estimation
has focused on studying minimax rates for point estimation, there has also been some work
on obtaining confidence intervals for such estimates. One approach is based on proving
asymptotic normality [Sricharan et al., 2012, Moon and Hero, 2014, Krishnamurthy et al.,
2015, Singh et al., 2016] of the estimator. This is useful for obtaining an asymptotically
valid confidence interval on the density functional. The other approach is to prove finite-
sample concentration bounds for the estimator [Liu et al., 2012, Singh and Póczos, 2014a,b].
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While useful for obtaining confidence intervals, concentration inequalities can also be used for
analyzing the downstream performance of procedures that use density functional estimates as
subroutines. This has consequences for applications such as structure learning and statistical
testing; for example, Liu et al. [2012] showed that a concentration inequality for mutual
information estimation can be used to prove minimax optimal upper bounds on using the
Chow-Liu procedure [Chow and Liu, 1968] to learn a forest-shaped graphical model.

Nonsmooth Shannon Functionals: In the case of Shannon information-theoretic
functionals (such as Shannon entropy, mutual information, and KL divergence), the Fréchet
differentiability of F requires the assumption that the probability densities in question are
lower bounded away from 0 (see Assumption (LB). Until recently, it was unclear whether
this assumption was necessary or simply a proof artefact. Jiao et al. [2017] showed that,

without the lower boundedness assumption, the slows to � n−
2s
s+d + n−1.

Direct Estimation of Density-Ratio Functionals: In the case of f -divergences (i.e.,
divergences of the form

Df (P,Q) = E
X∼Q

[
f

(
dP

dQ
(X)

)]
, (6)

where f : [0,∞)→ R is convex with f(1) = 0), there has also been some work on weakening
the assumptions from smoothness conditions on the individual distributions P and Q to
assumptions only on the relative density dP

dQ
[Noshad et al., 2017, Kpotufe, 2017].

Computational Advances: Relatively recently, there has been a focus on developing
computationally efficient functional estimators, such as the linear-time estimators of Noshad
and Hero [2018], Noshad and Hero III [2018] based on hashing.

My Work: In the next several subsections, I discuss my own contributions to density
functional estimation over the past few years, published in the papers Singh and Póczos
[2014a,b], Singh et al. [2016], Singh and Póczos [2016, 2017] and the preprint Singh et al.
[2018a].

4.4 Plugging in a Boundary-Corrected Kernel Density

Given a known density functional F and assuming the sample space to be a subset of Rd,
we first considered a simple estimator, namely the plug-in estimate F̂ = F (p̂), where p̂ is a
pointwise estimate of the probability density p. While these estimators are quite simple, their
convergence rates under standard nonparametric assumptions were previously unknown. In
two papers in 2014 (Singh and Póczos [2014a] in ICML focusing on the special case of Rényi
divergences Singh and Póczos [2014b] in NIPS considering general functionals), we estab-
lished the first finite-sample convergence rate guarantees for estimators of this type. Under
relatively mild conditions, these papers also proved finite-sample exponential concentration
inequalities for these estimators (around their expectation), which which continue to be, to
the best of our knowledge, relatively unique results for density functional estimators. In
this section, we briefly summarize the main results of Singh and Póczos [2014a] and Singh
and Póczos [2014b]. It is worth noting that the work of Krishnamurthy et al. [2014] and
Kandasamy et al. [2015] has since provided improved convergence rates (at increased com-
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putational cost) for bias-corrected variants of our estimators, based on von Mises expansion
of the functional F .

4.4.1 Boundary Bias

These näıve estimates are subject “boundary bias” (i.e., bias due to discontinuity of the
density at the boundary of its support). Hence, to bound the finite-sample bias of such a
simple estimates, the density is required to satisfy some additional assumptions near the
boundary of its support. One possibility is the “periodic boundary condition” considered
in Kandasamy et al. [2015], in which the density is assumed to be the restriction of a 1-
periodic function (in every dimension) to [0, 1]d; this is equivalent to replacing the unit cube
[0, 1]d with the d-dimensional torus, and boundary bias can then be corrected by replacing
the kernel K with its 1-periodic summation Kperiodic =

∑
z∈ZK(· + z); Alternatively, one

can consider the “vanishing boundary derivative condition”, in which all derivatives of the
density are assumed to approach 0 at the boundary of [0, 1]d. In this case, boundary bias can
be corrected by replacing the kernel K with the summation of its “mirrored” versions across
each subset of boundary; the formal definition of this “mirrored” kernel in high dimensions
is rather technical and can be found in Singh and Póczos [2014a].

Although one can construct examples satisfying either of these assumptions, both as-
sumptions are rather artificial, and work has been done on relaxing these assumptions; see,
e.g., the thesis [Moon, 2016] of Kevin Moon for both kernel and nearest neighbor methods
that avoid such strong boundary assumptions.

4.4.2 Main Results

We obtained two main results:

1. Suppose F is twice Fréchet differentiable over P , and suppose p is s-Hölder continuous
with s-order boundary conditions. For an appropriately chosen (s-order, bounded
support) kernel K. Then, there exists a constant CB > 0 such that, for any bandwidth
h ≤ 1, the bias

B(F̂ ) := E
X1,...,Xn

IID∼ P

[
F̂
]
− F (p)

is at most B(F̂ ) ≤ CB
(
hs + 1

nhd

)
. Note that this is minimized (up to constant factors)

by setting h = n−
1

s+d , in which case (for a slightly different constant CB), B(F̂ ) ≤
CB

(
n−

s
s+d

)
.

2. Suppose F is once Fréchet differentiable over P . Then, there exists a constant CV > 0
such that, regardless of the bandwidth h, the estimator satisfies the concentration
inequality

P
X1,...,Xn

IID∼ P

[∣∣∣∣∣F̂ − E
X1,...,Xn

IID∼ P

[
F̂
]∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2ε2n

C2
V

)
. (7)
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It follows that V
X1,...,Xn

IID∼ P

[
F̂
]
≤ C2

V n
−1.

Combining these two main results, via the usual decomposition of mean squared error
(L2 risk) into the sum of squared bias and variance, gives a bound, for some C > 0, of

MSE
[
F̂
]
≤ C

(
n−

2s
s+d + n−1

)
.

It is worth noting that many functionals of interest, such as Shannon entropy, are not
Fréchet differentiable at arbitrary densities. Hence, to apply our results to these functionals,
we may need additional restrictions on the class P of permissible densities. In the case
of Shannon entropy (and most other information theoretic functionals), it is sufficient to
assume that the true density is both upper bounded and lower bounded away from 0. That
is, κ∗ := supx∈X p(x) < ∞ and κ∗ := infx∈X p(x) > 0; the constant factors in the above
upper bounds will then depend on κ∗ and κ∗.

This work was largely motivated by the 2-dimensional entropy and mutual information
estimates analyzed in Liu et al. [2012]. While this thesis focuses primarily on the minimax
convergence rates of estimators in mean squared error (L2 risk), concentration inequalities
of the form (7) are useful for analyzing (via union bounds) applications that utilize many
simultaneous estimates of a density functional; for example, Liu et al. [2012] showed that,
using the boundary-corrected plug-in estimator above, the greedy Chow-Liu procedure [Chow
and Liu, 1968], which requires estimates of mutual information between all pairs of available
variables, can be used to provide minimax optimal estimates of forest-shaped graphical
models as well as of the underlying probability densities.

4.5 Bias-Corrected k-Nearest Neighbor Estimators

Next, we investigated a classical and quite popular, but relatively poorly understood, ap-
proach to estimating information theoretic quantities, based on k-nearest neighbor statis-
tics. This approach dates back to Kozachenko and Leonenko [1987], who studied a 1-nearest
neighbor estimator for differential Shannon entropy. Generalizations have since been given
by Goria et al. [2005] to use k > 1 nearest neighbors, by Wang et al. [2009] to estimate KL
divergence, by Leonenko et al. [2008] (with corrections in Leonenko and Pronzato [2010])
to estimate Rényi entropies, by Póczos and Schneider [2011] to estimate Rényi and Tsallis
divergences, and by Poczos and Schneider [2012] to estimate conditional entropies and di-
vergences; see Poczos et al. [2011] for a survey of these estimators and discussion of their
asymptotic consistency.

As we describe below, the construction of these estimators requires a rather precise anal-
ysis specific to the density functional F of interest, and these methods therefore apply only
to a select group of density functionals (namely, those listed above). Firstly, the functional
of interest must have the form

F (P ) = E
X∼P

[f(p(x))] ,
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for some f : [0,∞) → R ∪ {−∞,∞}, and, furthermore, as described below, to perform the
bias-correction, we must be able to analytically compute a particular expectation in terms
of f . However, these estimators are relatively easy to compute, and, for the functionals
for which these estimators are known, these estimators often provide the best empirical
performance among known estimators [Pérez-Cruz, 2009, Szabó, 2014, Berrett et al., 2016,
Gao et al., 2017].

Excepting the analysis of Tsybakov and van der Meulen [1996] for a truncated variant
of the Kozachenko-Leonenko estimator in the 1-dimensional case, the convergence rates of
these estimators were unknown until recently. In contrast, beginning in 2016 (almost 30
years after the seminal paper of Kozachenko and Leonenko [1987]), there has been a flurry of
work studying this problem. In particular, in 2016, our NIPS paper Singh and Póczos [2016],
as well as the thesis Berrett et al. [2016] of Thomas Berrett in Richard Samworth’s group at
Cambridge, and work [Gao et al., 2017] by Weihao Gao and others at UIUC independently
but simultaneously provided the first general upper bounds on the convergence rates of the
original Kozachenko-Leonenko estimator (and of the generalization to k > 1 by Goria et al.
[2005]). Among these works, our paper Singh and Póczos [2016] is unique in that it provides
convergence rates not only for Shannon entropy estimation, but also for KL divergence and
for more general (e.g., Rényi and Tsallis) entropies and divergences. This section briefly
describes the main results of that paper. First, however, we provide some intuition for the
estimators considered, which we call bias-corrected fixed-k nearest neighbor, or BCFkNN,
estimators.

4.5.1 k-NN density estimation and plug-in functional estimators

Let cd :=
(2Γ(1+ 1

p))
d

Γ(1+n
p )

denote the volume of the unit `p ball in Rd, let µ denote the Lebesgue

measure, and, for any x ∈ X , r > 0, let B(x, r) := {y ∈ X : ‖x − y‖p < r} denote the
radius-r `p-ball centered at x. Finally, for any k ∈ [n] and x ∈ X , let εk(x) denote the
distance between x and its kth-nearest neighbor among the data points X1, ..., Xn.

The k-NN density estimator

p̂k(x) =
k/n

µ(B(x, εk(x))
=

k/n

cDεDk (x)

is well-studied nonparametric density estimator [Loftsgaarden et al., 1965], motivated by
noting that, for small ε > 0,

p(x) ≈ P (B(x, ε))

µ(B(x, ε))
,

and that, P (B(x, εk(x))) ≈ k/n. One can show that, for x ∈ RD at which p is continuous,
if k → ∞ and k/n → 0 as n → ∞, then p̂k(x) → p(x) in probability ([Loftsgaarden et al.,
1965], Theorem 3.1). Thus, a natural approach for estimating F (P ) is the plug-in estimator

F̂PI :=
1

n

n∑
i=1

f (p̂k(Xi)) . (8)
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Since p̂k → p in probability pointwise as k, n → ∞ and f is smooth, one can show F̂PI is
consistent, and in fact derive finite sample convergence rates (depending on how k →∞). For

example, [Sricharan et al., 2011] show a convergence rate of O
(
n−

2s
s+D + n−1

)
for s-Hölder

continuous densities (after sample splitting and boundary correction) by setting k � n
s

s+d .
Unfortunately, while necessary to ensure V [p̂k(x)] → 0, the requirement k → ∞ is

computationally burdensome. Furthermore, increasing k can increase the bias of p̂k due to
over-smoothing, suggesting that this may be sub-optimal for estimating F (P ). Indeed, our
previous work based on kernel density estimation [Singh and Póczos, 2014b] suggested that,
for plug-in functional estimation (as compared to density estimation), under-smoothing may
be preferable, since the empirical mean effectively performs additional smoothing.

4.5.2 Fixed-k functional estimators

An alternative approach is to fix k as n→∞. Since F̂PI is itself an empirical mean, unlike

V [p̂k(x)], V
[
F̂PI

]
→ 0 as n→∞. The more critical complication of fixing k is bias. Since

f is typically non-linear, the non-vanishing variance of p̂k translates into asymptotic bias. A
solution adopted by several papers is to derive a bias correction function B (depending only
on known factors) such that

E
X1,...,Xn

[
B
(
f

(
k/n

µ(B(x, εk(x))

))]
= E

X1,...,Xn

[
f

(
P (B(x, εk(x)))

µ(B(x, εk(x))

)]
. (9)

For continuous p, the quantity

pεk(x)(x) :=
P (B(x, εk(x)))

µ(B(x, εk(x))
(10)

is a consistent estimate of p(x) with k fixed, but it is not computable, since P is unknown.
The bias correction B gives us an asymptotically unbiased estimator

F̂B(P ) :=
1

n

n∑
i=1

B (f (p̂k(Xi))) =
1

n

n∑
i=1

B
(
f

(
k/n

µ(B(Xi, εk(Xi))

))
.

that uses k/n in place of P (B(x, εk(x))). This estimate extends naturally to divergences:

F̂B(P,Q) :=
1

n

n∑
i=1

B (f (p̂k(Xi), q̂k(Xi))) .

As an example, if f = log (as in Shannon entropy), then it can be shown that, for any
continuous p,

E [logP (B(x, εk(x)))] = ψ(k)− ψ(n).

Hence, for Bn,k := ψ(k)− ψ(n) + log(n)− log(k),

E
X1,...,Xn

[
f

(
k/n

µ(B(x, εk(x))

)]
+Bn,k = E

X1,...,Xn

[
f

(
P (B(x, εk(x)))

µ(B(x, εk(x))

)]
.
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giving the estimator of [Kozachenko and Leonenko, 1987]. Other examples of functionals for
which the bias correction is known are given in Table 1.

In general, deriving an appropriate bias correction can be quite a difficult problem specific
to the functional of interest, and it is not our goal presently to study this problem; rather,
we are interested in bounding the error of F̂B(P ), assuming the bias correction is known.
Hence, our results apply to all of the estimators in Table 1, as well as any estimators of this
form that may be derived in the future.

4.5.3 Main Results

As with the previous results for kernel density plug-in estimators, we begin by separately
bounding the bias and the variance of F̂B(P ):

1. Suppose that, for X ∼ P , the random variables f ′(p(X)) and (p(X))−s/D lie in L2
P (X );

i.e.,

E
X∼P

[
(f ′(p(X)))

2
]
<∞ and E

X∼P

[
(p(X))−2s/D

]
<∞.

Then, for some CB > 0, we have the bias bound∣∣∣∣∣ E
X1,...,Xn

IID∼ P

F̂B(P )− F (P )

∣∣∣∣∣ ∈ O
((

k

n

)s/D)
.

2. Suppose that, for X ∼ P , the random variable B(f(p(X))) lies in L2
P (X ); i.e.,

E
X∼P

[
(B(f(p(X))))2] <∞.

Suppose that the quantity
∫∞

0
e−yykf(y) < ∞ is finite. Then, we have the variance

bound
V
X1,...,Xn

IID∼ P

[
F̂B(P )

]
∈ O

(
n−1
)
.

Combining these two bounds and setting k to be constant (with respect to n) gives a
mean squared error bound, for some constant C > 0, of

MSE
X1,...,Xn

[
F̂B(P )

]
≤ C

(
n−

2s
d + n−1

)
4.6 Estimation of Sobolev Quantities and other Quadratic Fourier

Functionals

The functionals discussed so far are all integral functionals, in that they depend on integrals
(over the sample space) of functions of the pointwise values of the probability density p from
which the data are drawn; roughly, they have the form

F (P ) =

∫
X
f(p(x)) dx,
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for some function f : [0,∞) → R (e.g., when F is the Shannon entropy, f(x) = −x log x).
This excludes functionals that cannot be computed in terms of pointwise evaluations of the
density.

Here, we consider estimation of some functionals that depend on the derivatives of the p,
or, equivalently, on the Fourier representation of p. Initially, we considered Sobolev(-Hilbert)
(squared) norms, inner products, and (squared) distances, although, for simplicity, we will
discuss only norms here. As an example, for an integer s, the s-order Sobolev norm ‖p‖Hs

of p can be understood as the L2 norm of the sth weak derivative of p:

‖p‖Hs = ‖p(s)‖L2 ;

‖p‖Hs is therefore used of a measure of the smoothness of p. Standard smoothness assump-
tions in nonparametric statistics can be thought of as bounds on particular Sobolev norms,
and these quantities thus determine the convergence rates of many nonparametric estimators
(e.g., density or regression estimates) [Tsybakov, 2008]. They also appear in closed forms for
the asymptotic variance of such estimators [Bickel and Ritov, 1988], as well as of robust rank-
based estimators such as the Wilcoxon statistic [Hodges Jr and Lehmann, 1963, Schweder,
1975]; their estimates are therefore useful for computing confidence intervals around such
estimators.

Importantly, Sobolev norms have a relatively simple representation in Fourier space:

‖p‖Ht =
∑
z∈Z

|z|2s|p̃z|2. (11)

Since each p̃z is a linear functional of p, it is straightforward to estimate by the sample mean
p̂z := 1

n

∑n
i=1 φz(Xi). Plugging these pointwise estimates in for p̃z in Equation (11) gives a

natural estimate for ‖p‖Ht .
Suppose p ∈ Hs for some s > t. Then, we showed in Singh et al. [2016] that the minimax

convergence rate is of order n−
8(s−t)
4s+d .

We considered a broader class of weighted L2 inner products having the form

〈P,Q〉az =
∑
z∈Z

a2
zP̃zQ̃z,

where Z is some countable index set, and, for some L2-orthonormal family {φz}z∈Z of func-
tions,

P̃z := E
X∼P

[φz(X)] and Q̃z := E
Y∼Q

[φz(X)] .

This class of weighted L2 inner products includes, of course, finite-dimensional, L2, and
Sobolev inner products, but also, for example, the induced inner product of any reproducing
kernel Hilbert space with a translation-invariant kernel in L2 (i.e., a kernel K : H×H → R
such that, for some κ ∈ L2(C), for all x, y,∈ H, K(x, y) = κ(x− y)). Namely, this includes
the commonly used kernels, such as the Gaussian, Laplacian, Sobolev, and sinc kernels.

For this larger class of quadratic functionals, we recently showed in Singh et al. [2018a]
that the above estimator achieves the minimax rate.
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4.7 Nonparanormal Information Estimation

So far, we have striven to make minimal assumptions on the distribution of the data, focusing
on Hölder- or Sobolev-type smoothness assumptions. Unfortunately, minimax convergence
rates under these weak assumptions scale very poorly with the dimension; the number of
samples required to guarantee an MSE of at most ε > 0 scales, for some constant c > 0,
as ε−cD. Kandasamy et al. [2015] suggested that even their (minimax optimal) estimators
fail to reliably converge when d is much larger than 4-6. Put simply, except in very low
dimensions, these spaces are too large to perform even point estimation of nonlinear density
functionals.

At the other extreme, there has been a very detailed study of the estimation of information-
theoretic quantities when the data are assumed to be truly Gaussian [Ahmed and Gokhale,
1989, Misra et al., 2005, Srivastava and Gupta, 2008, Cai et al., 2015]. The most sophisticated
analysis, due to Cai et al. [2015], derived the exact probability law of the log-determinant

log |Σ̂| of the empirical covariance matrix Σ̂. From this, they derived a deterministic bias
correction, giving an information estimator for which they proved an MSE upper bound of
−2 log

(
1− D

n

)
(≈ 2D/n when D/n is small) and a high-dimensional central limit theorem

for the case D → ∞ as n → ∞ (but D < n). However, these results rely delicately on the
assumption that the data are jointly Gaussian, and the performance of these estimators can
degrade very quickly when the data deviate from Gaussian. Especially in high dimensions,
it is unlikely that data are jointly Gaussian, making these estimators brittle in practice.

To summarize, despite substantial theoretical work on estimating information-theoretic
quantities, the practical settings in which we can estimate them are quick narrow: the data
dimension must either be quite low, or the data must follow an exact parametric distribution.
We considered filling the gap between these two extreme settings by studying information
estimation in a semiparametric compromise between the two settings, in a model known
as the “nonparanormal” (a.k.a. “Gaussian copula”) model. The nonparanormal model,
analogous to the additive model popular in regression [Friedman and Stuetzle, 1981], limits
complexity of interactions among variables but makes minimal assumptions on the marginal
distribution of each variable. The result scales better with dimension than nonparametric
models, while being far more robust than Gaussian models.

4.7.1 Multivariate Mutual Information and the Nonparanormal Model

There are a number of distinct generalizations of mutual information to more than two
variables. The definition we consider is simply the difference between the sum of marginal
entropies and the joint entropy:

Definition 1. (Multivariate mutual information) Let X1, . . . , XD be R-valued random
variables with a joint probability density p : RD → [0,∞) and marginal densities p1, ..., pD :
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R→ [0,∞). The multivariate mutual information I(X) of X = (X1, . . . , XD) is defined by

I(X) := E
X∼p

[
log

(
p(X)∏D

j=1 pj(Xj)

)]

=
D∑
j=1

H(Xj)−H(X), (12)

where H(X) = −EX∼p[log p(X)] denotes entropy of X.

This notion of multivariate mutual information, originally due to Watanabe [1960] (who
called it “total correlation”) measures total dependency, or redundancy, within a set of D
random variables. It has also been called the “multivariate constraint” [Garner, 1962] and
“multi-information” [Studenỳ and Vejnarová, 1998]. Many related information theoretic
quantities can be expressed in terms of I(X), and can thus be estimated using estimators of
I(X). Examples include pairwise mutual information I(X, Y ) = I((X, Y )) − I(X) − I(Y ),
which measures dependence between (potentially multivariate) random variables X and Y ,
conditional mutual information

I(X|Z) = I((X,Z))−
D∑
j=1

I((Xj, Z)),

which is useful for characterizing how much dependence within X can be explained by a
latent variable Z [Studenỳ and Vejnarová, 1998], and transfer entropy (a.k.a. “directed
information”) TX → Y , which measures predictive power of one time series X on the future
of another time series Y . I(X) is also related to entropy via Eq. (12), but, unlike the above
quantities, this relationship depends on the marginal distributions of X, and hence involves
some additional considerations (namely, some fairly mild smoothness assumptions on the
marginals).

We now define the class of nonparanormal distributions, from which we assume our data
are drawn.

Definition 2. (Nonparanormal distribution, a.k.a. Gaussian copula model) A
random vector X = (X1, . . . , XD)T is said to have a nonparanormal distribution (denoted
X ∼ NPN (Σ; f)) if there exist functions {fj}Dj=1 such that each fj : R→ R is a diffeomor-
phism 5 and f(X) ∼ N (0,Σ), for some (strictly) positive definite Σ ∈ RD×D with 1’s on the
diagonal (i.e., each σj = Σj,j = 1). 6 Σ is called the latent covariance of X and f is called
the marginal transformation of X.

5A diffeomorphism is a continuously differentiable bijection g : R→ R ⊆ R such that g−1 is continuously
differentiable.

6Setting E [f(X)] = 0 and each σj = 1 ensures model identifiability, but does not reduce the model space,
since these parameters can be absorbed into the marginal transformation f .
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In our paper Singh and Póczos [2017], under the assumption that the data X follows a
nonparanormal distribution, we proposed three estimators for I(X). The first one estimator
is based on normalizing the empirical marginals to be approximately Gaussian, then directly
computing the covariance of the normalized data. The latter two estimators are based on
rank statistics (multivariate generalizations of Spearman’s ρ and Kendall’s τ), which one
can analytically show have bijective relationships with the covariance matrix of a multivari-
ate Gaussian. Since rank statistics are invariant to marginal transformations of the data,
applying the bijections to the rank statistics immediately gives an estimate of the latent
covariance matrix Σ, which can then be used to estimate I(X).

For the estimator based on Spearman’s ρ, we proved a convergence rate of order O(d2/n)
(assuming a lower bound on the minimum eigenvalue of Σ), a dramatic improvement over
the exponential dependence of the sample complexity on d in the nonparametric case. In a
number of simulations, we further explored the large-sample properties of these estimators,
as well as their robustness to various forms of model misspecification.

4.8 Condensed Summary of Results on Density Functional Esti-
mation

In this section, we provide a condensed tabular reference for all our results on density func-
tional estimation, as well as some results due to others.

4.8.1 Assumptions

Below section, we list, for reference, all of the assumptions made in various portions of this
thesis. Table 1 indicates which of these assumptions we utilize, for each functional and
estimator of interest.

(D) The probability distribution P has a density p : X → [0,∞).

(s-H) p is s-Hölder continuous (s > 0). Specifically, is t is the greatest integers strictly
less than s, then p is t-times (strongly) differentiable, and f (t) ∈ L∞ for .any This is
equivalent to the Sobolev space condition f ∈ W s,∞.

(s-S) p lies in the s-Sobolev-Hilbert spaces Hs (s > 0). This is equivalent to the Sobolev
space condition f ∈ W s,2.

(LB) p is lower bounded away from 0; i.e., infx∈X p(x) > 0.

(B) p is well-behaved near the boundary of X ; typically, this means either a periodic or
vanishing-derivative boundary condition. Usually, it is also required that the sample
space X is known.

(Fr2) The functional F : P → R is twice-Fréchet differentiable.

(NPN) p is a nonparanormal distribution (i.e., has a Gaussian copula)
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(s-SM) The 1-dimensional marginals of p are s-Sobolev (see assumption s-S above).

(d-PCN) The ε-covering number of r-bounded subsets of the metric space (X , ρ) grows at most
polynomially, of order d, with (r/ε)d. Specifically, for any x ∈ X , the covering number
NBx(r) : (0,∞) → N of the ball Bx(r) := {y ∈ X : ρ(x, y) < r} of radius r ∈ (0,∞)
centered at x is of order

NBx(r)(ε) ∈ O
((r

ε

)d)
,

where

NBx(r)(ε) := inf {|S| : S ⊆ X such that, ∀z ∈ Bx(r), ∃y ∈ S with ρ(z, y) < ε}

denotes the size of the smallest ε-cover of Bx(r). Note that this assumption holds
whenever, X ⊆ Rd, although it may also hold when X ⊆ RD (if the support of P
has lower intrinsic dimension d) or for non-Euclidean metric spaces. Our results on
convergence in Wasserstein distance actually hold for more general covering numbers,
but it is more difficult to express a closed form for the convergence rate, and we thus
consider this simplified form here.

(`-MM) P has a finite `th metric moment

m`(P ) := inf
x∈X

(
E

Y∼P

[
(ρ(x, Y ))`

])1/`

<∞.

When (X , ρ) is Euclidean, m` corresponds to the usual centered `th moment of P .
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4.9 Future Work

To complete this portion of the thesis, we propose two main lines of work advancing our
understanding of distribution functional estimation.

The first involves generalizing our previous works to other classes of probability distribu-
tions, in particular the Besov scale, which includes the Hölder and Sobolev classes as special
cases, but also includes spaces of inhomogeneous smoothness, such as the class of bounded
total variation. As noted below, this generalization can also be applied to our previously
described work on distribution estimation under alternative losses.

The second involves studying a major application of estimating density functionals (espe-
cially dissimilarity functionals such as Lp or Sobolev distances, or information divergences),
namely that of statistical hypothesis testing. To the best of our knowledge, no theoretical
results are known concerning the performance of hypothesis tests based on these estimators.
Thus, we wish to identify general classes of alternative hypotheses under which we can bound
the Type 2 error of these tests.

4.9.1 Extending Results to Besov Spaces

Our first proposal is to extend the previous work, conducted primarily under Hölder C`,α

or Hilbert-Sobolev spaces Hs, to the much larger scale of Besov spaces Bs
p,q. Besov spaces

include more general Sobolev spaces, as well as the space of functions of bounded variation.
Several equivalent formulations of Besov spaces can be given; here, we give the most relevant
one, in terms of rates of decay of wavelet series.

Fix a wavelet basis with mother wavelet ψ and father wavelet φ, and fix constants s > 0,
p, q ≥ 1. For any function

f =
∑
z∈Z

αj0,kφj0,k +
∑
j≥j0

∑
k∈Z

βj,kψj,k

(where {αj,z}j∈N,z∈Z and {βj,z}j∈N,z∈Z are the coefficients of f in the wavelet basis), the
(s, p, q)-Besov norm ‖f‖Bsp,q of f is given by

‖f‖Bsp,q := ‖α0‖`p +

(∑
j≥0

(
2j(s+1/2−1/p)‖βj‖`p

)q)1/q

. (13)

The radius-L (s, p, q)-Besov ball Bsp,q(L) is then given by

Bsp,q(L) :=
{
f : Rd → R

∣∣‖f‖Bsp,q ≤ L
}
.

Here, as in the Sobolev case Hs, s is an index of the smoothness, and as in the Lp case,
p and q, induce different exponential weightings of the coefficients of the function. Indeed,
the Hölder and Sobolev classes are special cases of Besov classes specifically, Bs2,2 = Hs and
Bs∞,∞ = Cs. Moreover, all of the problems we studied previously in this thesis, in which we
assumed P ⊆ Hs or P ⊆ Cs, can be extended naturally to the assumption P ⊆ Bsp,q.
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Indeed, there has been prior work on all of these problems, pioneered in the early 1990’s
by David Donoho; his paper Donoho et al. [1996] on density estimation is especially relevant.
In the case of distribution estimation, it is natural to consider the case where the loss is the
F -IPM and F is a ball in a Besov space.

In density functional estimation, to the best our knowledge, Besov spaces have only
been explored in the case of quadratic functionals [Cai et al., 2005, 2006]. Naturally, we
want to investigate general smooth functional estimation over densities in a Besov ball. For
these spaces, we conjecture that von Mises estimators based on plugging in optimal density
estimates will continue to be able to achieve the (presently unknown) minimax rate, although
the degree of the von Mises approximation required may be higher. It may also be interesting
to investigate nonsmooth entropy estimation (i.e., without the assumption that the density
is lower bounded away from 0), as in Jiao et al. [2017], in the Besov space setting.

4.9.2 Applications to Statistical Hypothesis Testing

Much of the work on distribution functional estimation has immediate application for non-
parametric statistical hypothesis testing (a.k.a., signal detection), especially for two-sample
(homogeneity) testing and, as a special case, independence testing.

For example, suppose that we observe n IID samples X1, ..., Xn
IID∼ P and Y1, ..., Yn

IID∼ Q
from each of two distributions P,Q ∈ P , and we are interested in determining whether P = Q
(two-sample testing). If ρ : P×P → [0,∞) is any functional satisfying ρ(P,Q) = 0 whenever
P = Q, then, under the null hypothesis H0 : P = Q, it suffices to test whether ρ(P,Q) =
0. This can be done using any estimate ρ̂ of ρ(P,Q), together with confidence intervals;
moreover, confidence can be easily estimated using a permutation test (i.e., producing a
sample from the null distribution P+Q

2
by permuting the samples X1, ..., Xn, Y1, ..., Yn)).

It is well-known that no statistical test can be uniformly optimal against even a moder-
ately large class of alternatives [Ingster and Suslina, 2012]. Therefore, given the generality
of the above testing method (across over both distributional assumptions and dissimilar-
ity functionals ρ), it is natural to wonder what sorts of alternatives such tests are effective
against, and how this depends on the choice of dissimilarity functional ρ.

Ingster and Suslina [2012] thoroughly studies minimax rates for nonparametric statistical
testing in a wide variety of settings. Due to its simplicity, they focus on the nonparametric
Gaussian sequence model, and hence they consider some test statistics that are similar
to the Sobolev distance estimators we considered in Section 4.6. However, they do not
specifically study tests based on general dissimilarity functionals, statistical independence
tests, or conditional tests.

There have been a few studies of the power of statistical tests based on particular dissim-
ilarity functionals, mostly based on either MMD or classification accuracy (i.e., the accuracy
of a classifier trained to distinguish samples from the two distributions. Reddi et al. [2015]
provide an analysis of two-sample tests based on MMD metric, showing that its performance
against Gaussian mean-shift alternatives is comparable to that of Student’s t-test, which is
specifically tailored to and optimal for this testing problem. Lopez-Paz and Oquab [2016]
and Ramdas et al. [2016] studied the power of two-sample tests based on classifiers. In the
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analysis of Lopez-Paz and Oquab [2016], the null and alternative hypotheses were expressed
in terms of the accuracy of the classifier; thus the results were very general but did not elu-
cidate the relationship between the data distribution and the testing power, at least without
further analysis of a particular classifier and hypothesized distributions in question. Ramdas
et al. [2016] specifically considered the case of distinguishing two Gaussians with different
means and identical covariances; here, they showed that a test based on a simple classifier
(Fisher’s linear discriminant analysis (LDA)) is minimax rate-optimal. However, it is not
clear what implications this has for nonparametric tests, especially since Fisher’s LDA can
distinguish only classes with different means.

Ramdas et al. [2015] studied the relationship between estimation of MMD and hypothesis
testing using MMD; they showed that, although MMD can be estimated at the rate n−1/2

independent of dimension, in many cases, statistical testing nevertheless suffers in high-
dimensions because the MMD itself between the two distributions becomes small. This
highlights the fact that estimating a dissimilarity metric and using it to perform statistical
tests are quite different problems, requiring significantly different analysis. This difference
can also have important practical consequences. For example, the experments of Pérez-
Cruz [2009] suggest that, when using BCFk mutual information estimators for dependence
testing, letting k scale as

√
n was optimal, even though fixed k or k ∈ O(log n) is optimal

for estimation. Intuitively, if the bias of the estimator at P and at the hypothesized null
distribution are similar, then these cancel, and variance comes to dominate the error of the
test, so that over-smoothing becomes preferable.

We propose to begin by lower bounding the power of two-sample tests based on plugging
estimates of dissimilarity functionals into the above permutation methodology, considering
basic alternatives as in Ingster and Suslina [2012], Ramdas et al. [2015], Reddi et al. [2015],
as well as other novel alternatives that might be interesting for particular applications.

5 Proposed Timeline

1. August, 2018: Distribution estimation under IPM losses with Besov discriminator
and generator classes (this work is already underway; we have already derived lower
bounds that we believe to be tight, and have made progress on obtaining matching
upper bounds)

2. September-December, 2018: distribution estimation under Wasserstein loss in the
latent variable model (see Section 3.3; I have finished formulating this framework, and
anticipate that I will be able to obtain upper bounds in the near future; lower bounds
should be obtainable using standard techniques)

3. Spring, 2019: Smooth Distribution Functional Estimation over Besov Spaces

4. Spring, 2019: Guarantees for hypothesis testing using distribution functional esti-
mators

5. Summer, 2019: Thesis writing & defense preparation
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From September through December of 2018, I will be taking a leave-of-absence to com-
plete an internship, and have therefore allocated relatively little work for this time period.
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best order of convergence estimates. Sankhyā: The Indian Journal of Statistics, Series A,
pages 381–393, 1988.
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Probabilités et Statistiques, 50(2):539–563, 2014.

T Tony Cai, Mark G Low, et al. Nonquadratic estimators of a quadratic functional. The
Annals of Statistics, 33(6):2930–2956, 2005.

T Tony Cai, Mark G Low, et al. Optimal adaptive estimation of a quadratic functional. The
Annals of Statistics, 34(5):2298–2325, 2006.

T Tony Cai, Tengyuan Liang, and Harrison H Zhou. Law of log determinant of sample covari-
ance matrix and optimal estimation of differential entropy for high-dimensional Gaussian
distributions. J. of Multivariate Analysis, 137:161–172, 2015.

C Chow and Cong Liu. Approximating discrete probability distributions with dependence
trees. IEEE transactions on Information Theory, 14(3):462–467, 1968.

29



Kacper P Chwialkowski, Aaditya Ramdas, Dino Sejdinovic, and Arthur Gretton. Fast two-
sample testing with analytic representations of probability measures. In Advances in
Neural Information Processing Systems, pages 1981–1989, 2015.
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Béatrice Laurent et al. Efficient estimation of integral functionals of a density. The Annals
of Statistics, 24(2):659–681, 1996.

Jing Lei. Convergence and concentration of empirical measures under wasserstein distance
in unbounded functional spaces. arXiv preprint arXiv:1804.10556, 2018.

N. Leonenko and L. Pronzato. Correction of ‘a class of Rényi information estimators for
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