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Abstract

This thesis studies several theoretical problems in nonparametric statistics and
machine learning, mostly in the areas of nonparametric density functional estimation
(estimating an integral functional of the population distribution from which the data
are drawn) and nonparametric density estimation (estimating the entire population
distribution from which the data are drawn). A consistent theme is that, although
nonparametric density estimation is traditionally thought to be intractable in high-
dimensions, several equally (or more) useful tasks are relatively more tractable, even
with similar or weaker assumptions on the distribution.

Our work on density functional estimation focuses on several types of integral
functionals, such as information theoretic quantities (entropies, mutual informa-
tions, and divergences), measures of smoothness, and measures of (dis)similarity
between distributions, which play important roles as subroutines elsewhere in statis-
tics, machine learning, and signal processing. For each of these quantities, under a
variety of nonparametric models, we provide some combination of (a) new estima-
tors, (b) upper bounds on convergence rates of these new estimators, (c) new upper
bounds on the convergence rates of established estimators, (d) concentration bounds
or asymptotic distributions for estimators, or (e) lower bounds on the minimax risk
of estimation. We briefly discuss some applications of these density functional esti-
mators to hypothesis testing problems such as two-sample (homogeneity) or (condi-
tional) independence testing.

For density estimation, whereas the majority of prior work has focused on esti-
mation under L2 or other Lp losses, we consider minimax convergence rates under
several new losses, including the whole spectrum of Wasserstein distances and a
large class of metrics called integral probability metrics (IPMs) that includes, for ex-
ample, Lp, total variation, Kolmogorov-Smirnov, earth-mover, Sobolev, Besov, and
some RKHS distances. These losses open several new possibilities for nonparametric
density estimation in certain cases; some examples include

• convergence rates with no or reduced dependence on dimension

• density-free distribution estimation, for data lying in general (e.g., non-Euclidean)
metric spaces, or for data whose distribution may not be absolutely continuous
with respect to Lebesgue measure

• convergence rates depending only on intrinsic dimension of data

Our main results here are the derivation of minimax convergence rates. However,
we also briefly discuss several consequences of our results. For example, we show
that IPMs have close connections with generative adversarial networks (GANs), and
we leverage our results to prove the first finite-sample guarantees for GANs, in an
idealized model of GANs as density estimators. These results may help explain why
these tools appear to perform well at problems that are intractable from traditional
perspectives of nonparametric statistics. We also briefly discuss consequences for es-
timation of certain density functionals, Monte Carlo integration of smooth functions,
and distributionally robust optimization.
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Chapter 1

Introduction

This thesis is broadly concerned with a theoretical perspective on the following ques-
tion:

Given some data, when and how precisely can we estimate the data’s un-
derlying population distribution, or some property thereof, under mini-
mal prior assumptions on the population?

Since this problem is, more or less, the concern of all of statistics, I’ll now be

more specific. Suppose we observe n IID samples X1:n = X1, ..., Xn
IID∼ P from an

unknown probability distribution P lying in a nonparametric class P of distribu-
tions. Within the minimax estimation framework, this thesis addresses special cases
of several basic statistical problems (listed here in decreasing order of my focus):

1. Distribution Functional Estimation: Given a (known, nonlinear) functional
F : P → R, we want to estimate its value F (P ) at the unknown distribution P .
That is, we want to compute a function F̂ : X n → R that has small worst-case
L2 risk:

sup
P∈P

E
X1:n

IID∼ P

[(
F (P )− F̂ (X1:n)

)2
]
.

2. Distribution Estimation: Given a loss function ` : P × P → [0,∞), we want
to estimate the entire distribution P . That is, we want to compute a function
P̂ : X n → P that has small worst-case risk under `:

sup
P∈P

E
X1:n

IID∼ P

[
`
(
P, P̂ (X1:n)

)]
.

3. Implicit Distribution Estimation (a.k.a., Sampling): Given a loss function ` :
P × P → [0,∞) and a “latent” random variable Z with a known distribution
on a space Z , we want to learn a transformation f such that the distribution of
f(Z) is close to P . That is, we want to compute a function f̂ : X n × Z → X
such that, if P

f̂(X1:n,Z)|X1:n
∈ P is the conditional distribution of f̂(X1:n, Z)

given X1:n, then
sup
P∈P

E
X∼P

[
`
(
P, P

f̂(X1:n,Z)|X1:n

)]
.

4. Hypothesis Testing: Given a partition P = P0 ∪ P1 into two disjoint subsets,
we would like to determine whether P ∈ P0 or P ∈ P1, under a constraint on
the Type 1 error probability. That is, given a level α ∈ (0, 1), we would like to
compute a test statistic T̂ : X n → {P0,P1} that has high power

inf
P∈P

Pr
X1:n

IID∼ P

[
T̂ (X1:n) = P1

]
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whenever P ∈ P1, subject to the type-1 error bound

sup
P∈P0

Pr
X1:n

IID∼ P

[
T̂ (X1:n) = P1

]
≤ α.

In each of the above problems, certain parameters need to be specified to give
a well-defined statistical problem. The first is the hypothesis class P of distribu-
tions under consideration. Second, each problem has its own specific parameters
that need to be fixed: the functional F , the loss `, the latent variable Z, or the null
hypothesis P0.

In most of this thesis, the class P of distributions will be a bounded set in some
nonparametric function space, such as a Hölder, Sobolev, Besov, or reproducing ker-
nel Hilbert space. A variety of choices of parameters F , `, etc. are considered, based
largely on a variety of downstream applications.

1.1 Organization of this thesis

The majority of this document was produced by collecting (read: copying and past-
ing large portions of) several papers into a single document, and most of the chap-
ters are organized in the manners of the original papers, with the addition of a short
introductory section at the beginning of each chapter. The resulting thesis has the
benefit that each chapter can be read in relative isolation. The remainder the current
chapter seeks to bind these into a somewhat coherent whole.

We now give a brief overview of each chapter, including notes on the papers
through which the contents of the chapter were originally disseminated.

Chapter 2 This chapter presents my first work, conducted in 2013-2014, on density func-
tional estimation, based on Barnabás’ suggestion that I generalize a conver-
gence rate and concentration inequality (due to Liu, Wasserman, and Laf-
ferty (2012)) for estimating the entropy of a 2-dimensional random variable
under 2nd-order Hölder assumptions. I first generalized this rate to estima-
tion of Rényi-α divergences in arbitrary dimensions, under general Hölder
conditions, a task which primarily relied on careful exposition in terms of
general-order multivariate Taylor series. I then further generalized this to a
broad class of smooth functionals, including, as examples, Lp distances, many
entropy, mutual information, and divergence measures, and their conditional
analogues. These results were published in two papers:

• Shashank Singh and Barnabás Póczos (2014b). “Generalized Exponential
Concentration Inequality for Rényi Divergence Estimation”. In: Proceed-
ings of The 31st International Conference on Machine Learning, pp. 333–341

• Shashank Singh and Barnabás Póczos (2014a). “Exponential concentra-
tion of a density functional estimator”. In: Advances in Neural Information
Processing Systems, pp. 3032–3040

At the time, not much was known in the machine learning community about
estimation of integral functionals of densities, and the approach in these pa-
pers is somewhat elementary: essentially a kernel density estimate of the data
is plugged into the functional of interest. For many of the information theo-
retic functionals, this approach requires assuming that the density was lower
bounded away from 0, enforcing in turn that its support was bounded. The
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primary challenge then involves correcting for boundary bias along the edge
of the density’s support; this is performed using a mirroring trick, which relies
on strong assumptions on the behavior of the density near the boundary.

Of the two papers listed above, the results in the latter paper largely supersede
those in the former paper (albeit in somewhat less detail), and so this chapter
presents only material from the latter paper. I am obliged to note that this
work formed the bulk of my undergraduate honors thesis, in part for which
I was granted an MS degree in Mathematical Sciences, and I am including it
in this thesis only because it is thematically quite revelant. Hopefully, this
thesis contains enough novel content to justify the PhD degree even with the
exclusion of this chapter.

Chapter 3 This chapter presents work, conducted from 2015-2016, on a family of k-nearest
neighbor entropy and divergence estimators, based on classic work of Kozachenko
and Leonenko (1987). While quite popular in practice, these estimators had, at
the time very limited theoretical guarantees, and their convergence rate was
unknown (except in a very particular case studied by (Tsybakov and Meulen,
1996)). For these estimators, I derived the first general convergence rates for
smooth densities in arbitrary dimensions. These results were released in a
technical report, on the special case of entropy estimation, and a 2016 NeurIPS
paper on general smooth functionals; Chapter 3 presents the latter paper:

• Shashank Singh and Barnabás Póczos (2016a). “Analysis of k-Nearest
Neighbor Distances with Application to Entropy Estimation”. In: arXiv
preprint arXiv:1603.08578

• Shashank Singh and Barnabás Póczos (2016b). “Finite-Sample Analysis of
Fixed-k Nearest Neighbor Density Functional Estimators”. In: Advances
in Neural Information Processing Systems, pp. 1217–1225

Interestingly (and as far as I know, purely coincidentally), two other papers
(Berrett, Samworth, and Yuan (2019) and Gao, Oh, and Viswanath (2017a)) ap-
peared later that year providing closely related results – this was somewhat
remarkable, given the nearly 30 years that has passed since the proposal of
the estimator by Kozachenko and Leonenko (1987). In retrospect, my anal-
ysis of these estimators is rather delicate, requiring both bounded support
and quite specific conditions on the density near the boundary of its support.
Berrett, Samworth, and Yuan (2019), although specific to the case of entropy
estimation, gave a more nuanced analysis, allowing certain distributions with
unbounded support and showing not only a central limit theorem but also
asymptotic efficiency. Gao, Oh, and Viswanath (2017a) showed slower rates
(due to a less careful analysis of boundary bias), but also extended their results
to the widely used mutual information estimator of Kraskov, Stögbauer, and
Grassberger (2004), providing what, as far as I know, continue to be the only
rates for that estimator. Thus, all three papers provided essentially distinct re-
sults for these estimators. Finally, we note that quite a bit of progress has since
been made based on these three papers; state-of-the-art results for these esti-
mators can be found in Berrett and Samworth (2019) and Jiao, Gao, and Han
(2018).
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Chapter 4 In the previous chapters, we strove to make minimal assumptions on the distri-
bution of the data, focusing on Hölder- or Sobolev-type smoothness assump-
tions. Unfortunately, minimax convergence rates under these weak assump-
tions scale very poorly with the data dimension D; minimax lower bounds
imply that the number of samples required to guarantee an MSE of at most
ε > 0 scales, for some constant c > 0, as ε−cD. Quite simply, these spaces are
too large to estimate their parameters except in very low dimensions.

This chapter presents an attempt to scale the estimation of information-theoretic
quantities to higher dimensions, by using a smaller semiparametric model, the
Gaussian copula (a.k.a., “nonparanormal”) model. We focus on multivariate
mutual information, in terms of which most other quantities can be expressed.
In particular (since there are a number of distinct generalizations of mutual in-
formation to more than two variables), we consider estimating the difference
between the sum of marginal entropies and the joint entropy:

I(X) := E
X∼p

[
log

(
p(X)∏D

j=1 pj(Xj)

)]
=

D∑
j=1

H(Xj)−H(X).

To do this, we propose 3 distinct estimators, based on different estimates of
the latent covariance structure of the data. For two of these estimators, we
prove error bounds of order D2/n, far better (for large D) than rates achiev-
able by nonparametric estimators. We also experimentally show, in a number
of simulations, that the proposed estimators can do well in moderately high-
dimensional settings, in which most fully nonparametric estimates are unin-
formative. We also show that these estimators are relatively robust, compared
to optimal estimators for the perfectly Gaussian case, which fail dramatically
when the data deviate even moderately from Gaussian. These results were
published in ICML 2017:

• Shashank Singh and Barnabás Póczos (2017). “Nonparanormal Informa-
tion Estimation”. In: International Conference on Machine Learning, pp. 3210–
3219

Chapter 5 Many results in nonparametric statistics rely on the assumption that the data
distribution exhibits some degree of smoothness, typically in some sense of
having sufficiently small derivatives. This assumption is essentially never
verified in practice, and this caused me to become interested in estimating
smoothness parameters of a data density. Motivated by this idea, Chapter 5
presents some work on estimating (semi-)inner products, (semi-)norms, and
(pseudo-)metrics between densities lying in Hilbert spaces, such as Sobolev-
Hilbert and certain reproducing kernel Hilbert spaces. Salient examples in-
clude (squared) L2 norms of the derivatives of the density; e.g., in 1 dimension,
for integer s,

‖p‖2Hs = ‖p(s)‖22 =

∫ (
ds

dxs
p(x)

)2

dx.

These and more general quantities can be re-expressed in terms of the char-
acteristic function of the density p. We initially published work on estimating
Sobolev-Hilbert quantities via empirical characteristic functions in NeurIPS in
2016:
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• Shashank Singh, Simon S Du, and Barnabás Póczos (2016). “Efficient
Nonparametric Smoothness Estimation”. In: Advances in Neural Informa-
tion Processing Systems, pp. 1010–1018

At NeurIPS, Bharath Sriperumbudur pointed out that the same methods could
be used to estimate other quadratic functionals of probability distributions,
such as RKHS quantities. This observation led to our writing a journal paper
(in submission), which comprises the majority of Chapter 5):

• Shashank Singh, Bharath K Sriperumbudur, and Barnabás Póczos (2018a).
“Minimax Estimation of Quadratic Fourier Functionals”. In: arXiv preprint
arXiv:1803.11451

Notably (for me), this work was the first of mine to include novel minimax
lower bounds, which are relatively complicated to prove for many density
functional estimation problems (as compared to full density estimation).

Chapter 6 This is the first of two chapters that switch from the problem of estimating R-
valued functionals of distributions to the problem of estimating entire distri-
butions. This chapter considers the case where loss is measured using Wasser-
stein distances, which enables analysis in an extreme breadth of settings (es-
sentially, arbitrary metric spaces), using the very general tools of covering/packing
numbers. The chapter focuses on (a) upper bounding the rate of convergence
of the empirical distribution (in terms of covering numbers of balls in the sam-
ple space and moment assumptions on the distribution) and (b) lower bound-
ing the minimax rate of distribution estimation (in terms of, essentially, the
same quantities). For the most part, we find that the empirical distribution
converges at the minimax optimal rate. The following preprint has been sub-
mitted to a statistics journal:

• Shashank Singh and Barnabás Póczos (2018). “Minimax Distribution Es-
timation in Wasserstein Distance”. In: arXiv preprint arXiv:1802.08855

Chapter 7 This chapter studies nonparametric density estimation under yet another fam-
ily of loss functions, integral probability metrics (IPMs). That is, given a sam-

ple space X ⊆ RD, suppose we observe n IID samples X1, ..., Xn
IID∼ p from a

probability density p over X that is unknown but assumed to lie in a regularity
class P . We seek an estimator p̂ : X n → P of p, with the goal of minimizing a
loss

dF (p, p̂(X1, ..., Xn)) := sup
f∈F

∣∣∣∣∣ E
X∼p

[f(X)]− E
X∼p̂(X1,...,Xn)

[f(X)]

∣∣∣∣∣ , (∗)

where F , called the discriminator class, is some class of functions on X .

Metrics of the form (∗) are called integral probability metrics (IPMs)1, and can
capture a wide variety of metrics on probability distributions by choosing F
appropriately (Müller, 1997). This work studied the case where both F and

1While the name IPM seems to have caught on as the most widely used (Müller, 1997; Sriperum-
budur, Fukumizu, Gretton, Schölkopf, and Lanckriet, 2012; Bottou, Arjovsky, Lopez-Paz, and Oquab,
2018; Zellinger, Moser, Grubinger, Lughofer, Natschläger, and Saminger-Platz, 2019), many other
names have been used for these quantities, including adversarial loss (Dong and Yang, 2019), MMD (Dz-
iugaite, Roy, and Ghahramani, 2015), and F-distance or neural net distance (Arora, Ge, Liang, Ma, and
Zhang, 2017).
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P belong to a family of ellipsoids that includes, as examples, Lp, Sobolev, and
RKHS balls. We have two main motivations for studying this problem:

(a) This problem unifies nonparametric density estimation and the central
problem of empirical process theory, namely bounding quantities of the form
dF (P, P̂ ) when P̂ is the empirical distribution Pn = 1

n

∑n
i=1 δXi of the data (Pol-

lard, 1990). Whereas empirical process theory typically avoids restricting P
and fixes the estimator P̂ = Pn, focusing on the discriminator class F , non-
parametric density estimation typically fixes the loss to be an Lp distance, and
seeks a good estimator P̂ for a given distribution class P . In contrast, we study
how constraints on F and P jointly determine convergence rates of a number
of estimates P̂ of P . This perspective allows us to unify, generalize, and extend
several classical and recent results in distribution estimation.

(b) This problem is a theoretical framework for analyzing generative ad-
versarial networks (GANs). Specifically, given a GAN whose discriminator
and generator networks encode functions in F and P , respectively, recent
work (Liu, Bousquet, and Chaudhuri, 2017; Liang, 2017) showed that a GAN
can be seen as a distribution estimate2

P̂ = argmin
Q∈P

sup
f∈F

∣∣∣∣∣ E
X∼Q

[f(X)]− E
X∼P̃n

[f(X)]

∣∣∣∣∣ = argmin
Q∈P

dF

(
Q, P̃n

)
, (1.1)

i.e., an estimate which directly minimizes empirical IPM risk with respect to a
(regularized) empirical distribution P̃n. While, in the original GAN model (Good-
fellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio,
2014), P̃n was the empirical distribution Pn = 1

n

∑n
i=1 δXi of the data, Liang

(2017) showed that, under smoothness assumptions on the population dis-
tribution, performance is improved by replacing Pn with a regularized ver-
sion P̃n, equivalent to the instance noise trick that has become standard in
GAN training (Sønderby, Caballero, Theis, Shi, and Huszár, 2016; Mescheder,
Geiger, and Nowozin, 2018). We show, in particular, that when P̃n is a kernel-
smoothed estimate, a GAN based on sufficiently large fully-connected neural
networks with ReLU activations learns Sobolev probability distributions at the
minimax optimal rate.

This work was published in NeurIPS 2018:

• Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer,
and Barnabás Póczos (2018). “Nonparametric density estimation under
adversarial losses”. In: Advances in Neural Information Processing Systems,
pp. 10225–10236

Chapter 8 This chapter is intended to serve as a conclusion, but is really an assortment of
short discussions on topics that are closely related to, but not formally part of,
this thesis. The topics include a few extensions of the completed work, a num-
ber of downstream applications or consequences of this work, and some pre-
liminary thoughts on future work. Most of this chapter is speculative, with the
exception of one recent paper (under review) that extends the ideas of Chap-
ter 7 to Besov IPMs and distributions:

2We assume a good optimization algorithm for computing (1.1), although this is also an active area
of research.
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• Ananya Uppal, Shashank Singh, and Barnaás Póczos (2019). “Nonpara-
metric Density Estimation under Besov IPM Losses”. In: arXiv preprint
arXiv:1902.03511

Appendix A This appendix briefly overviews some collaborative projects I have worked on
that are unrelated to the themes of this thesis. This includes a few simulation
and applied machine learning papers in computational biology:

• Shashank Singh, Sabrina Rashid, Zhicheng Long, Saket Navlakha, Hanna
Salman, Zoltán N Oltvai, and Ziv Bar-Joseph (2016). “Distributed Gradi-
ent Descent in Bacterial Food Search”. In: arXiv preprint arXiv:1604.03052

• Sabrina Rashid, Shashank Singh, Saket Navlakha, and Ziv Bar-Joseph
(2019). “A bacterial based distributed gradient descent model for mass
scale evacuations”. In: Swarm and Evolutionary Computation 46, pp. 97–
103

• Sabrina Rashid, Zhicheng Long, Shashank Singh, Maryam Kohram, Harsh
Vashistha, Saket Navlakha, Hanna Salman, Zoltán N Oltvai, and Ziv Bar-
Joseph (2019). “Adjustment in tumbling rates improves bacterial chemo-
taxis on obstacle-laden terrains”. In: Proceedings of the National Academy of
Sciences, p. 201816315

• Yang Yang, Ruochi Zhang, Shashank Singh, and Jian Ma (2017). “Ex-
ploiting sequence-based features for predicting enhancer–promoter inter-
actions”. In: Bioinformatics 33.14, pp. i252–i260

• Shashank Singh, Yang Yang, Barnabás Póczos, and Jian Ma (2019). “Pre-
dicting enhancer-promoter interaction from genomic sequence with deep
neural networks”. In: Quantitative Biology, pp. 1–16

a theoretical paper on convolutional dictionary learning that was intended for
but never quite made it to application in computational biology:

• Shashank Singh, Barnabás Póczos, and Jian Ma (2018). “Minimax recon-
struction risk of convolutional sparse dictionary learning”. In: Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 1327–1336

some applied work in psychology on eye-tracking analysis methodology:

• Jaeah Kim, Shashank Singh, Anna Vande Velde, Erik D. Thiessen, and
Anna V. Fisher (2018). “A Hidden Markov Model for Analyzing Eye-
Tracking of Moving Objects”. In: Proceedings of the 2018 Annual Conference
of the Cognitive Science Society (CogSci)

• Jaeah Kim, Shashank Singh, Erik Thiessen, and Anna Fisher (2019). A
Hidden Markov Model for Analyzing Eye-Tracking of Moving Objects. DOI:
10.31234/osf.io/mqpnf. URL: psyarxiv.com/mqpnf

and an applied paper on deep neural network compression that sprang out of
an internship at Amazon:

• Shashank Singh, Ashish Khetan, and Zohar Karnin (2019). “DARC: Dif-
ferentiable ARchitecture Compression”. In: arXiv preprint arXiv:1905.08170

Appendix B The main contents of this short appendix are a list of the types of assumptions
commonly made in the study of density functional estimation, and a table that

https://doi.org/10.31234/osf.io/mqpnf
psyarxiv.com/mqpnf
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associates these assumptions with proposed estimators and their known con-
vergence rates, along with a few other notes on what is known about these
estimators (central limit theorems, adaptivity results, etc.). This table was orig-
inally constructed to give an overview of the field for my thesis proposal. Due
the active nature of this area, not all of the most recent work is included, but it
was fairly comprehensive as of Summer, 2018.
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Chapter 2

Plug-in Kernel Density Estimates

2.1 Introduction

Many important quantities in machine learning and statistics can be viewed as in-
tegral functionals of one of more continuous probability densities; that is, quantities
of the form

F (p1, · · · , pk) =

∫
X1×···×Xk

f(p1(x1), . . . , pk(xk)) d(x1, . . . , xk),

where p1, · · · , pk are probability densities of random variables taking values inX1, · · · , Xk,
respectively, and f : Rk → R is some measurable function. For simplicity, we re-
fer to such integral functionals of densities as ‘density functionals’. In this chapter,
we study the problem of estimating density functionals. In our framework, we as-
sume that the underlying distributions are not given explicitly. Only samples of n
independent and identically distributed (i.i.d.) points from each of the unknown,
continuous, nonparametric distributions p1, · · · , pk are given.

2.1.1 Motivations and Goals

One density functional of interest is Conditional Mutual Information (CMI), a mea-
sure of conditional dependence of random variables, which comes in several vari-
eties including Rényi-α and Tsallis-α CMI (of which Shannon CMI is the α→ 1 limit
case). Estimating conditional dependence in a consistent manner is a crucial prob-
lem in machine learning and statistics; for many applications, it is important to de-
termine how the relationship between two variables changes when we observe addi-
tional variables. For example, upon observing a third variable, two correlated vari-
ables may become independent, and, conversely, two independent variables may
become dependent. Hence, CMI estimators can be used in many scientific areas to
detect confounding variables and help distinguish causation from correlation (Pearl,
1998; Montgomery, 2005). Conditional dependencies are also central to Bayesian net-
work learning (Koller and Friedman, 2009; Zhang, Peters, Janzing, and Scholkopf,
2011), where CMI estimation can be used to verify compatibility of a particular Bayes
net with observed data under a local Markov assumption.

Other important density functionals are divergences between probability distri-
butions, including Rényi-α (Rényi, 1970) and Tsallis-α (Villmann and Haase, 2010)
divergences (of which Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951)
is the α → 1 limit case), and Lp divergence. Divergence estimators can be used
to extend machine learning algorithms for regression, classification, and cluster-
ing from the standard setting where inputs are finite-dimensional feature vectors
to settings where inputs are sets or distributions (Póczos, Xiong, Sutherland, and
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Schneider, 2012; Oliva, Poczos, and Schneider, 2013). Entropy and mutual infor-
mation (MI) can be estimated as special cases of divergences. Entropy estimators
are used in goodness-of-fit testing (Goria, Leonenko, Mergel, and Novi Inverardi,
2005), parameter estimation in semi-parametric models (Wolsztynski, Thierry, and
Pronzato, 2005a), and texture classification (Hero, Ma, Michel, and Gorman, 2002b),
and MI estimators are used in feature selection (Peng, Long, and Ding, 2005), clus-
tering (Aghagolzadeh, Soltanian-Zadeh, Araabi, and Aghagolzadeh, 2007), optimal
experimental design (Lewi, Butera, and Paninski, 2007), and boosting and facial ex-
pression recognition (Shan, Gong, and Mcowan, 2005). Both entropy and mutual
information estimators are used in independent component and subspace analysis
(Learned-Miller and Fisher, 2003; Szabó, Póczos, and Lőrincz, 2007) and image reg-
istration (Hero, Ma, Michel, and Gorman, 2002b). Further applications of divergence
estimation are in Leonenko, Pronzato, and Savani (2008).

Despite the practical utility of density functional estimators, little is known about
their statistical performance, especially for functionals of more than one density. In
particular, few density functional estimators have known convergence rates, and, to
the best of our knowledge, no finite sample exponential concentration bounds have
been derived for general density functional estimators. An important consequence
of this exponential bound is that, using a union bound, we can guarantee accuracy
of multiple estimates simultaneously. For example, Liu, Wasserman, and Lafferty
(2012) shows how this can be applied to optimally analyze forest density estimation
algorithms. Because the CMI of variables X and Y given a third variable Z is zero if
and only X and Y are conditionally independent given Z, by estimating CMI with
a confidence interval, we can test for conditional independence with bounded type
I error probabilty.

Our main contribution is to derive convergence rates and an exponential con-
centration inequality for a particular, consistent, nonparametric estimator for large
class of density functionals, including conditional density functionals. We also apply
our concentration inequality to the important case of Rényi-α CMI.

2.1.2 Related Work

Although lower bounds are not known for estimation of general density functionals
(of arbitrarily many densities), Birgé and Massart (1995) lower bounded the conver-
gence rate for estimators of functionals of a single density (e.g., entropy functionals)
by O

(
n−4β/(4β+d)

)
, when the data are d-dimensional and the underlying density is

assumed to lie in a β-Hölder class. Krishnamurthy, Kandasamy, Poczos, and Wasser-
man (2014) extended this lower bound to the two-density cases of L2, Rényi-α, and
Tsallis-α divergences and gave plug-in estimators which achieve this rate. These
estimators enjoy the parametric rate of O

(
n−1/2

)
when β > d/4, and work by opti-

mally estimating the density and then applying a correction to the plug-in estimate.
In contrast, our estimator undersmooths the density, and converges at a slower rate
of O

(
n−β/(β+d)

)
when β < d (and the parametric rate O

(
n−1/2

)
when β ≥ d), but

obeys an exponential concentration inequality, which is not known for the estima-
tors of Krishnamurthy, Kandasamy, Poczos, and Wasserman (2014).

Another exception for f -divergences is provided by Nguyen, Wainwright, and
Jordan. (2010), using empirical risk minimization. This approach involves solv-
ing an ∞-dimensional convex minimization problem which be reduced to an n-
dimensional problem for certain function classes defined by reproducing kernel Hilbert
spaces (n is the sample size). When n is large, these optimization problems can still
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be very demanding. They studied the estimator’s convergence rate, but did not de-
rive concentration bounds.

A number of papers have studied k-nearest-neighbors estimators, primarily for
Rényi-α density functionals including entropy (Leonenko, Pronzato, and Savani,
2008), divergence (Wang, Kulkarni, and Verdú, 2009) and conditional divergence
and MI (Poczos and Schneider, 2012). These estimators work directly, without the
intermediate density estimation step, and generally have proofs of consistency, but
their convergence rates and dependence on k, α, and the dimension are unknown.
One recent exception is a k-nearest-neighbors based estimator that converges at the
parametric rate when β > d, using an optimally weighted ensemble of weak esti-
mators (Sricharan, Wei, and Hero, 2013; Moon and Hero, 2014b). These estimators
appear to perform well in higher dimensions, but rates for these estimators require
that k →∞ as n→∞, causing computational difficulties for large samples.

Although the literature on dependence measures is huge, few estimators have
been generalized to the conditional case (Fukumizu, Gretton, Sun, and Schoelkopf,
2008; Reddi and Poczos, 2013). There is some work on testing conditional depen-
dence (Su and White, 2008; Bouezmarni, Rombouts, and Taamouti, 2009), but, un-
like CMI estimation, these tests are intended to simply accept or reject the hypothesis
that variables are conditionally independent, rather than to measure conditional de-
pendence. Our exponential concentration inequality also suggests a new test for
conditional independence.

This chapter continues a line of work begun by Liu, Wasserman, and Lafferty
(2012) and continued by Singh and Póczos (2014b). Liu, Wasserman, and Lafferty
(2012) proved an exponential concentration inequality for an estimator of Shannon
entropy and MI in the 2-dimensional case. Singh and Póczos (2014b) used simi-
lar techniques to derive an exponential concentration inequality for an estimator
of Rényi-α divergence in d dimensions, for a larger family of densities. Both used
plug-in estimators based on a mirrored kernel density estimator (KDE) on [0, 1]d.
Our work generalizes these results to a much larger class of density functionals, as
well as to conditional density functionals (see Section 6). In particular, we use a
plug-in estimator for general density functionals based on the same mirrored KDE,
and also use some lemmas regarding this KDE proven by Singh and Póczos (2014b).
By considering the more general density functional case, we are also able to signif-
icantly simplify the proofs of the convergence rate and exponential concentration
inequality.

Organization

In Section 2, we establish the theoretical context of our work, including notation,
the precise problem statement, and our estimator. In Section 3, we outline our main
theoretical results and state some consequences. Sections 4 and 5 give precise state-
ments and proofs of the results in Section 3. Finally, in Section 6, we extend our
results to conditional density functionals, and state the consequences in the particu-
lar case of Rényi-α CMI.

2.2 Density Functional Estimator

2.2.1 Notation

For an integer k, [k] = {1, · · · , k} denotes the set of positive integers at most k. Using
the notation of multi-indices common in multivariable calculus, Nd denotes the set
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of d-tuples of non-negative integers, which we denote with a vector symbol~·, and,
for~i ∈ Nd,

D
~i :=

∂|
~i|

∂i1x1 · · · ∂idxd
and |~i| =

d∑
k=1

ik.

For fixed β, L > 0, r ≥ 1, and a positive integer d, we will work with densities in the
following bounded subset of a β-Hölder space:

CβL,r([0, 1]d) :=

p : [0, 1]d → R

∣∣∣∣∣∣∣∣ sup
x 6=y∈D
|~i|=`

|D~ip(x)−D~ip(y)|
‖x− y‖(β−`)

≤ L

 , (2.1)

where ` = bβc is the greatest integer strictly less than β, and ‖ · ‖r : Rd → R is the
usual r-norm. To correct for boundary bias, we will require the densities to be nearly
constant near the boundary of [0, 1]d, in that their derivatives vanish at the boundary.
Hence, we work with densities in

Σ(β, L, r, d) :=

{
p ∈ CβL,r([0, 1]d)

∣∣∣∣∣ max
1≤|~i|≤`

|D~ip(x)| → 0 as dist(x, ∂[0, 1]d)→ 0

}
,

(2.2)

where ∂[0, 1]d = {x ∈ [0, 1]d : xj ∈ {0, 1} for some j ∈ [d]}.

2.2.2 Problem Statement

For each i ∈ [k] let Xi be a di-dimensional random vector taking values in Xi :=
[0, 1]di , distributed according to a density pi : X → R. For an appropriately smooth
function f : Rk → R, we are interested in a using random sample of n i.i.d. points
from the distribution of each Xi to estimate

F (p1, . . . , pk) :=

∫
X1×···×Xk

f(p1(x1), . . . , pk(xk)) d(x1, . . . , xk). (2.3)

2.2.3 Estimator

For a fixed bandwidth h, we first estimate each density pi using the mirrored kernel
density estimator (KDE) p̂i (described formally in Singh and Póczos (2014b)), which
reflects each sample over nearby boundaries to mitigate boundary bias before per-
forming kernel density estimation (as illustrated in Figure 2.1). We then use a plug-in
estimate of F (p1, . . . , pk).

F (p̂1, . . . , p̂k) :=

∫
X1×···×Xk

f(p̂1(x1), . . . , p̂k(xk)) d(x1, . . . , xk).

Our main results generalize those of Singh and Póczos (2014b) to a broader class of
density functionals.

2.3 Main Results

In this section, we outline our main theoretical results, proven in Sections 4 and 5,
and also discuss some important corollaries.
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FIGURE 2.1: A data point x1 ∈ C(1,2,∅,∅) ⊆ [0, 1]2 (using the notation
of Singh and Póczos (2014b)), along with its three reflected copies.The
sum of the integrals overX of (the absolute values of) the four kernels

(with shaded support) is ‖K‖21.

We decompose the estimatator’s error into bias and a variance-like terms via the
triangle inequality:

|F (p̂1, . . . , p̂k)− F (p1, . . . , pk)| ≤ |F (p̂1, . . . , p̂k)− EF (p̂1, . . . , p̂k)|︸ ︷︷ ︸
variance-like term

+ |EF (p̂1, . . . , p̂k)− F (p1, . . . , pk)|︸ ︷︷ ︸
bias term

.

We will prove the “variance” bound

P (|F (p̂1, . . . , p̂k)− EF (p̂1, . . . , p̂k)| > ε) ≤ 2 exp

(
−2ε2n

C2
V

)
(2.4)

for all ε > 0 and the bias bound

|EF (p̂1, . . . , p̂k)− F (p1, . . . , pk)| ≤ CB
(
hβ + h2β +

1

nhd

)
, (2.5)

where d := maxi di, and CV and CB are constant in the sample size n and bandwidth
h for exact values. To the best of our knowledge, this is the first time an exponential
inequality like (2.4) has been established for general density functional estimation.
This variance bound does not depend on h and the bias bound is minimized by
h � n−

1
β+d , we have the convergence rate

|EF (p̂1, . . . , p̂k)− F (p1, . . . , pk)| ∈ O
(
n
− β
β+d

)
.

It is interesting to note that, in optimizing the bandwidth for our density functional
estimate, we use a smaller bandwidth than is optimal for minimizing the bias of
the KDE. Intuitively, this reflects the fact that the plug-in estimator, as an integral
functional, performs some additional smoothing.

We can use our exponential concentration bound to obtain a bound on the true
variance of F (p̂1, . . . , p̂k). If G : [0,∞) → R denotes the cumulative distribution
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function of the squared deviation of F (p̂1, . . . , p̂k) from its mean, then

1−G(ε) = P
(

(F (p̂1, . . . , p̂k)− EF (p̂1, . . . , p̂k))
2 > ε

)
≤ 2 exp

(
−2εn

C2
V

)
.

Thus,

V[F (p̂1, . . . , p̂k)] = E
[
(F (p̂1, . . . , p̂k)− EF (p̂1, . . . , p̂k))

2
]

=

∫ ∞
0

1−G(ε) dε ≤ 2

∫ ∞
0

exp

(
−2εn

C2
V

)
= C2

V n
−1.

We then have a mean squared error of

E
[
(F (p̂1, . . . , p̂k)− F (p1, . . . , pk))

2
]
∈ O

(
n−1 + n

− 2β
β+d

)
,

which is in O(n−1) if β ≥ d and O
(
n
− 2β
β+d

)
otherwise.

It should be noted that the constants in both the bias bound and the variance
bound depend exponentially on the dimension d. Lower bounds in terms of d are
unknown for estimating most density functionals of interest, and an important open
problem is whether this dependence can be made asymptotically better than expo-
nential.

2.4 Bias Bound

In this section, we precisely state and prove the bound on the bias of our density
functional estimator, as introduced in Section 3.

Assume each pi ∈ Σ(β, L, r, d) (for i ∈ [k]), assume f : Rk → R is twice continu-
ously differentiable, with first and second derivatives all bounded in magnitude by
some Cf ∈ R, 1 and assume the kernel K : R → R has bounded support [−1, 1] and
satisfies∫ 1

−1
K(u) du = 1 and

∫ 1

−1
ujK(u) du = 0 for all j ∈ {1, . . . , `}.

Then, there exists a constant CB ∈ R such that

|EF (p̂1, . . . , p̂k)− F (p1, . . . , pk)| ≤ CB
(
hβ + h2β +

1

nhd

)
.

2.4.1 Proof of Bias Bound

By Taylor’s Theorem, ∀x = (x1, . . . , xk) ∈ X1 × · · · × Xk, for some ξ ∈ Rk on the
line segment between p̂(x) := (p̂1(x1), . . . , p̂k(xk)) and p(x) := (p1(x1), . . . , pk(xk)),

1If p1(X1)×· · ·× pk(Xk) is known to lie within some cube [κ1, κ2]k, then it suffices for f to be twice
continuously differentiable on [κ1, κ2]k (and the boundedness condition follows immediately). This
will be important for our application to Rényi-α Conditional Mutual Information.
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letting Hf denote the Hessian of f

|E f(p̂(x))− f(p(x))| =
∣∣∣∣E(∇f)(p(x)) · (p̂(x)− p(x)) +

1

2
(p̂(x)− p(x))THf (ξ)(p̂(x)− p(x))

∣∣∣∣
≤ Cf

 k∑
i=1

|Bpi(xi)|+
∑
i<j≤k

|Bpi(xi)Bpj (xj)|+
k∑
i=1

E[p̂i(xi)− pi(xi)]2


where we used that p̂i and p̂j are independent for i 6= j. Applying Hölder’s Inequal-
ity,

|EF (p̂1, . . . , p̂k)− F (p1, . . . , pk)| ≤
∫
X1×···×Xk

|E f(p̂(x))− f(p(x))| dx

≤ Cf

 k∑
i=1

∫
Xi
|Bpi(xi)|+ E[p̂i(xi)− pi(xi)]2 dxi +

∑
i<j≤k

∫
Xi
|Bpi(xi)| dxi

∫
Xj
|Bpj (xj)| dxj


≤ Cf

(
k∑
i=1

√∫
Xi
B2
pi(xi) dxi +

∫
Xi

E[p̂i(xi)− pi(xi)]2 dxi

+
∑
i<j≤k

√∫
Xi
B2
pi(xi) dxi

∫
Xj
B2
pj (xj) dxj

)
.

We now make use of the so-called Bias Lemma proven by (Singh and Póczos,
2014b), which bounds the integrated squared bias of the mirrored KDE p̂ on [0, 1]d

for an arbitrary p ∈ Σ(β, L, r, d). Writing the bias of p̂ at x ∈ [0, 1]d as Bp(x) =

E p̂(x)− p(x), (Singh and Póczos, 2014b) showed that there exists C > 0 constant in
n and h such that ∫

[0,1]d
B2
p(x) dx ≤ Ch2β. (2.6)

Applying the Bias Lemma and certain standard results in kernel density estimation
(see, for example, Propositions 1.1 and 1.2 of (Tsybakov, 2008)) gives

|EF (p̂1, . . . , p̂k)− F (p1, . . . , pk)| ≤ C
(
k2hβ + kh2β

)
+
‖K‖d1
nhd

≤ CB
(
hβ + h2β +

1

nhd

)
,

where ‖K‖1 denotes the 1-norm of the kernel.

2.5 Variance Bound

In this section, we precisely state and prove the exponential concentration inequality
for our density functional estimator, as introduced in Section 3. Assume that f is
Lipschitz continuous with constant Cf in the 1-norm on p1(X1)× · · · × pk(Xk) (i.e.,

|f(x)− f(y)| ≤ Cf
∞∑
k=1

|xi − yi|, ∀x, y ∈ p1(X1)× · · · × pk(Xk)). (2.7)

and assume the kernel K ∈ L1(R) (i.e., it has finite 1-norm). Then, there exists a
constant CV ∈ R such that ∀ε > 0,

P (|F (p̂1, . . . , p̂k)− EF (p̂1, . . . , p̂k)|) ≤ 2 exp

(
−2ε2n

C2
V

)
.
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Note that, while we require no assumptions on the densities here, in certain specific
applications, such us for some Rényi-α quantities, where f = log, assumptions such
as lower bounds on the density may be needed to ensure f is Lipschitz on its domain.

2.5.1 Proof of Variance Bound

Consider i.i.d. samples (x1
1, . . . , x

n
k) ∈ X1 × · · · × Xk drawn according to the product

distribution p = p1 × · · · pk. In anticipation of using McDiarmid’s Inequality (McDi-
armid, 1989), let p̂′j denote the jth mirrored KDE when the sample xij is replaced by
new sample (xij)

′. Then, applying the Lipschitz condition (2.7) on f ,

|F (p̂1, . . . , p̂k)− F (p̂1, . . . , p̂
′
j , . . . , p̂k)| ≤ Cf

∫
Xj
|pj(x)− p′j(x)| dx,

since most terms of the sum in (2.7) are zero. Expanding the definition of the kernel
density estimates p̂j and p̂′j and noting that most terms of the mirrored KDEs p̂j and
p̂′j are identical gives

|F (p̂1, . . . , p̂k)− F (p̂1, . . . , p̂
′
j , . . . , p̂k)| =

Cf

nhdj

∫
Xj

∣∣∣∣∣Kdj

(
x− xij
h

)
−Kdj

(
x− (xij)

′

h

)∣∣∣∣∣ dx
where Kdj denotes the dj-dimensional mirrored product kernel based on K. Per-
forming a change of variables to remove h and applying the triangle inequality fol-
lowed by the bound on the integral of the mirrored kernel proven in (Singh and
Póczos, 2014b),

|F (p̂1, . . . , p̂k)− F (p̂1, . . . , p̂
′
j , . . . , p̂k)| ≤

Cf
n

∫
hXj

∣∣Kdj (x− x
i
j)−Kdj (x− (xij)

′)
∣∣ dx

≤
2Cf
n

∫
[−1,1]dj
|Kdj (x)| dx ≤

2Cf
n
‖K‖dj1 =

CV
n
,

(2.8)

forCV = 2Cf maxj ‖K‖
dj
1 . Since F (p̂1, . . . , p̂k) depends on kn independent variables,

McDiarmid’s Inequality then gives, for any ε > 0,

P (|F (p̂1, . . . , p̂k)− F (p1, . . . , pk)| > ε) ≤ 2 exp

(
− 2ε2

knC2
V /n

2

)
= 2 exp

(
−2ε2n

kC2
V

)
.

2.6 Extension to Conditional Density Functionals

Our convergence result and concentration bound can be fairly easily adapted to to
KDE-based plug-in estimators for many functionals of interest, including Rényi-α
and Tsallis-α entropy, divergence, and MI, and Lp norms and distances, which have
either the same or analytically similar forms as as the functional (2.3). As long as the
density of the variable being conditioned on is lower bounded on its domain, our
results also extend to conditional density functionals of the form 2

F (P ) =

∫
Z
P (z)f

(∫
X1×···×Xk

g

(
P (x1, z)

P (z)
,
P (x2, z)

P (z)
, . . . ,

P (xk, z)

P (z)

)
d(x1, . . . , xk)

)
dz

(2.9)
2We abuse notation slightly and also use P to denote all of its marginal densities.
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including, for example, Rényi-α conditional entropy, divergence, and mutual infor-
mation, where f is the function x 7→ 1

1−α log(x). The proof of this extension for gen-
eral k is essentially the same as for the case k = 1, and so, for notational simplicity,
we demonstrate the latter.

2.6.1 Problem Statement, Assumptions, and Estimator

For given dimensions dx, dz ≥ 1, consider random vectors X and Z distributed on
unit cubes X := [0, 1]dx and Z := [0, 1]dz according to a joint density P : X ×Z → R.
We use a random sample of 2n i.i.d. points from P to estimate a conditional density
functional F (P ), where F has the form (2.9).

Suppose that P is in the Hölder class Σ(β, L, r, dx+dz), noting that this implies an
analogous condition on each marginal of P , and suppose that P bounded below and
above, i.e., 0 < κ1 := infx∈X ,z∈Z P (z) and ∞ > κ2 := infx∈X ,z∈Z P (x, z). Suppose
also that f and g are continuously differentiable, with

Cf := sup
x∈[cg ,Cg ]

|f(x)| and Cf ′ := sup
x∈[cg ,Cg ]

|f ′(x)|, (2.10)

where

cg := inf g

([
0,
κ2

κ1

])
and Cg := sup g

([
0,
κ2

κ1

])
.

After estimating the densities P (z) and P (x, z) by their mirrored KDEs, using n
independent data samples for each, we clip the estimates of P (x, z) and P (z) below
by κ1 and above by κ2 and denote the resulting density estimates by P̂ . Our estimate
F (P̂ ) for F (P ) is simply the result of plugging P̂ into equation (2.9).

2.6.2 Proof of Bounds for Conditional Density Functionals

We bound the error of F (P̂ ) in terms of the error of estimating the corresponding
unconditional density functional using our previous estimator, and then apply our
previous results.

Suppose P1 is either the true density P or a plug-in estimate of P computed as
described above, and P2 is a plug-in estimate of P computed in the same manner
but using a different data sample. Applying the triangle inequality twice,

|F (P1)− F (P2)| ≤
∫
Z

∣∣∣∣P1(z)f

(∫
X
g

(
P1(x, z)

P1(z)

)
dx

)
− P2(z)f

(∫
X
g

(
P1(x, z)

P1(z)

)
dx

)∣∣∣∣
+

∣∣∣∣P2(z)f

(∫
X
g

(
P1(x, z)

P1(z)

)
dx

)
− P2(z)f

(∫
X
g

(
P2(x, z)

P2(z)

)
dx

)∣∣∣∣ dz
≤
∫
Z
|P1(z)− P2(z)|

∣∣∣∣f (∫
X
g

(
P1(x, z)

P1(z)

)
dx

)∣∣∣∣
+ P2(z)

∣∣∣∣f (∫
X
g

(
P1(x, z)

P1(z)

)
dx

)
− f

(∫
X
g

(
P2(x, z)

P2(z)

)
dx

)∣∣∣∣ dz
Applying the Mean Value Theorem and the bounds in (2.10) gives

|F (P1)− F (P2)| ≤
∫
Z
Cf |P1(z)− P2(z)|+ κ2Cf ′

∣∣∣∣∫
X
g

(
P1(x, z)

P1(z)

)
− g

(
P2(x, z)

P2(z)

)
dx

∣∣∣∣ dz
=

∫
Z
Cf |P1(z)− P2(z)|+ κ2Cf ′

∣∣GP1(z)(P1(·, z))−GP2(z)(P2(·, z))
∣∣ dz,
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where Gz is the density functional

GP (z)(Q) =

∫
X
g

(
Q(x)

P (z)

)
dx.

Note that, since the data are split to estimate P (z) and P (x, z), G
P̂ (z)

(P̂ (·, z)) de-
pends on each data point through only one of these KDEs. In the case that P1 is the
true density P , taking the expectation and using Fubini’s Theorem gives

E |F (P )− F (P̂ )| ≤
∫
Z
Cf E |P (z)− P̂ (z)|+ κ2Cf ′ E

∣∣∣GP (z)(P (·, z))−G
P̂ (z)

(P̂ (·, z))
∣∣∣ dz,

≤Cf

√∫
Z
E(P (z)− P̂ (z))2dz + 2κ2Cf ′CB

(
hβ + h2β +

1

nhd

)
≤ (2κ2Cf ′CB + CfC)

(
hβ + h2β +

1

nhd

)
applying Hölder’s Inequality and our bias bound (2.5), followed by the bias lemma
(2.6). This extends our bias bound to conditional density functionals. For the vari-
ance bound, consider the case where P1 and P2 are each mirrored KDE estimates of
P , but with one data point resampled (as in the proof of the variance bound, setting
up to use McDiarmid’s Inequality). By the same sequence of steps used to show
(2.8), ∫

Z
|P1(z)− P2(z)| dz ≤ 2‖K‖dz1

n
,

and ∫
Z

∣∣∣GP (z)(P (·, z))−G
P̂ (z)

(P̂ (·, z))
∣∣∣ dz ≤ CV

n
.

(by casing on whether the resampled data point was used to estimate P (x, z) or
P (z)), for an appropriate CV depending on supx∈[κ1/κ2,κ2/κ1] |g′(x)|. Then, by McDi-
armid’s Inequality,

P (|F (p̂1, . . . , p̂k)− F (p1, . . . , pk)| > ε) = 2 exp

(
− ε2n

4C2
V

)
.

2.6.3 Application to Rényi-α Conditional Mutual Information

As a concrete example, our estimator can be applied to estimate Rényi-α Condi-
tional Mutual Information (CMI). As an application, one might use an estimate of
this sort to test for conditional independence, i.e., for distinguishing between the
two graphical models presented in Figure 2.2. Consider random vectors X,Y , and
Z on X = [0, 1]dx , Y = [0, 1]dy , Z = [0, 1]dz , respectively. α ∈ (0, 1) ∪ (1,∞), the
Rényi-α CMI of X and Y given Z is

I(X;Y |Z) =
1

1− α

∫
Z
P (z) log

∫
X×Y

(
P (x, y, z)

P (z)

)α(P (x, z)P (y, z)

P (z)2

)1−α
d(x, y) dz.

(2.11)
In this case, the estimator which plugs mirrored KDEs for P (x, y, z), P (x, z), P (y, z),
andP (z) into (2.11) obeys the concentration inequality (2.4) withCV = κ∗‖K‖dx+dy+dz

1 ,
where κ∗ depends only on α, κ1, and κ2.
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FIGURE 2.2: Two possible graphs of dependence between variables
X , Y , and Z. The left graph corresponds to I(X;Y |Z) = 0, whereas
the right graph corresponds to I(X;Y |Z) > 0. These can thus be
distinguished using an estimate of conditional mutual information.

FIGURE 2.3: Log-log plot of squared error (averaged over 100 IID tri-
als) of our Rényi-0.8 estimator for various sample sizes n, alongside
our theoretical bound. Error bars indicate standard deviation of esti-

mator over 100 trials.

2.7 Experimental Results

This sections provides a very simple validation experiment, in which we used our
estimator to estimate the Rényi-α divergence between two normal distributions, re-
stricted to the unit cube [0, 1]3, with different means and identical, isotropic covari-
ances. In particular,

~µ1 =

0.3
0.3
0.3

 , ~µ2 =

0.7
0.7
0.7

 ,Σ =

0.2 0 0
0 0.2 0
0 0 0.2

 .
For each n ∈ {1, 2, 5, 10, 50, 100, 500, 1000, 2000, 5000}, n data points were sampled
according to each distribution and constrained (via rejection sampling) to lie within
[0, 1]3. Our estimator was computed from these samples, for α = 0.8,using the
Epanechnikov Kernel

K(u) =
3

4
(1− u2)1[−1,1],

with bandwidth h = 0.25. The true α-divergence was approximated by numerical
integration. Bias and variance of our estimator were then computed in the usual
manner based on 100 trials. Figure 2.3 shows the error and variance of our estima-
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tor for each n. We compare our estimator’s empirical error to an approximation of
our theoretical bound (also shown in Figure 2.3). Since the distributions used are
infinitely differentiable, β = ∞, and so the estimator’s MSE should converge at the
rate O(n−1). An appropriate constant multiple was computed from our bounds.
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Chapter 3

Bias Corrected Fixed-k Nearest
Neighbor Estimates

3.1 Introduction

This chapter focuses on a family of estimators for nonlinear expectation function-
als, based on k-nearest neighbor (k-NN) statistics, that are popular in practice due
to excellent empirical performance, but whose statistical properties have remained
elusive for decades.

3.1.1 Some history

These estimators, which we call “bias-corrected fixed-k” (BCFk) estimators were
broadly inspired by the 1-NN entropy estimator of Kozachenko and Leonenko (1987).
This method for estimating entropy has since been generalized extensively, by Go-
ria, Leonenko, Mergel, and Novi Inverardi (2005) to use k > 1 nearest neighbors, by
Wang, Kulkarni, and Verdú (2009) to estimate KL divergence, by Leonenko, Pron-
zato, and Savani (2008) (with corrections in Leonenko and Pronzato (2010)) to esti-
mate Rényi entropies, by Póczos and Schneider (2011) to estimate Rényi and Tsallis
divergences, and by Poczos and Schneider (2012) to estimate conditional entropies
and divergences; see Poczos, Xiong, and Schneider (2011) for a survey of these esti-
mators and discussion of their asymptotic consistency.

Excepting the analysis of Tsybakov and Meulen (1996) for a truncated variant
of the Kozachenko-Leonenko estimator in the 1-dimensional case, the convergence
rates of these estimators were unknown until recently. In contrast, beginning in 2016
(almost 30 years after the seminal paper of Kozachenko and Leonenko (1987)) there
has been a flurry of work studying this problem. In particular, in 2016, our NIPS
paper Singh and Póczos (2016b), as well as the thesis Berrett, Samworth, and Yuan
(2019) of Thomas Berrett in Richard Samworth’s group at Cambridge, and work
(Gao, Oh, and Viswanath, 2017a) by Weihao Gao and others at UIUC independently
but simultaneously provided the first general upper bounds on the convergence
rates of the original Kozachenko-Leonenko estimator (and of the generalization to
k > 1 by Goria, Leonenko, Mergel, and Novi Inverardi (2005)).

Of these papers, Berrett, Samworth, and Yuan (2019) provides the most nuanced
analysis of the original Kozachenko-Leonenko estimator (for general k), proving
asymptotic normality and even computing the asymptotic variance, while making
the weakest tail assumptions of the true probability distribution.

Gao, Oh, and Viswanath (2017a) require the density to have bounded support,
and the upper bound of Gao, Oh, and Viswanath (2017a) is somewhat loose, due to
a somewhat loose analysis of boundary bias. Intriguingly, they are able to extend
their results to the mutual information estimator proposed by Kraskov, Stögbauer,
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and Grassberger (2004), which is undoubtedly the most widely used nonparamet-
ric estimator of mutual information. This estimator is based on a variant of the
Kozachenko-Leonenko entropy estimator, but, rather than simply using three dif-
ferent entropy estimators (via the identity I(X,Y ) = H(X) +H(Y ) +H(X,Y )), the
KSG estimator uses a clever coupling of the choices of k, which causes a substan-
tial cancellation in the biases of these three estimators. Unfortunately, the variation
does not lend itself to easily adapting our analysis. The bounds of Gao, Oh, and
Viswanath (2017a) are the first theoretical results on this estimator and offer some
innovative insights into the performance advantage of the KSG estimator, although
I again believe their the rate of their error bound is loose given their smoothness
assumptions.

As described in the remainder of this chapter, Singh and Póczos (2016b) also
require the density to have bounded support, but prove general results, in that they
apply not only to the Kozachenko-Leonenko estimator, but in fact to any estimator
based on the same k-NN approach, as described in the next section. In particular,
this includes the estimators of Wang, Kulkarni, and Verdú (2009) for KL divergence
and of Leonenko, Pronzato, and Savani (2008).1

It is worth noting that Gao, Oh, and Viswanath (2017b) recently studied estima-
tion of a general simple integral functional F based on applying the estimator of
Leonenko, Pronzato, and Savani (2008) to estimate terms of the F ’s Taylor expan-
sion.

Leaving the finite-sample setting, (Bulinski and Dimitrov, 2018) recently proved
asymptotic unbiasedness and L2 consistency of the Kozachenko-Leonenko estima-
tor, even without making the Hölder or Sobolev smoothness assumptions typically
made when analyzing these estimators.

Finally, a very recent result due to Jiao, Gao, and Han (2018), namely that the
asymptotic convergence rate for estimating certain functionals, including entropy,
depends crucially on whether we assume the density to be lower bounded away
from zero (as this determines the smoothness of the functional over the class of dis-
tributions). For such functionals, if the density is allowed to take arbitrarily small
positive values, then, rather than the rate of O

(
n−min{ 8s

4s+D
,1}
)

MSE rate that is op-

timal for estimation of smooth functionals, or even the O
(
n−min{ 2s

D
,1}
)

rate that
we here derive for k-NN functionals in smooth settings, the minimax rate becomes,
up to logarithmic factors, a slower rate of O

(
n−min{ 2s

s+D
,1}
)

. This result implies
that, under these weaker assumptions, BCFk estimators (or at least Kozachenko-
Leonenko-type entropy estimators) are minimax optimal, providing some theoreti-
cal explanation for their strong empirical performance.

3.1.2 Some intuition for BCFk estimators

These estimators are generally based on the following line of reasoning:
Let εk(x) denote the distance from x to its k-nearest neighbor in the sample

X1, ..., Xn (i.e., εk = inf{ε ≥ 0 :
∑n

i=1 1{Xi∈Bε(x)} ≥ k}). Then,

p(x) ≈
P
(
Bεk(x)(x)

)
µ
(
Bεk(x)(x)

) ≈ k/n

µ
(
Bεk(x)(x)

) .
1Note that early results along these lines, containing the key analysis ideas but specific to entropy

estimation, are available in an unpublished technical report (Singh and Póczos, 2016a).
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Test Point

3rd nearest neighbor
r

FIGURE 3.1: Illustration of kNN density estimation at a point (red)
with k = 3, n = 10, D = 2.

An illustration of this estimate is provided in Figure 3.1.
In fact, it can be shown that, for Lebesgue-almost-all x ∈ X , E

[
k

nεDk (x)

]
→ p(x)

as n → ∞ (and, moreover, this convergence is uniform over x when p is some-
what smooth). However, if k is fixed as n → ∞, it is not necessarily the case that
V
[

k
nεDk (x)

]
→ 0 as n→∞; specifically, k/n

εDk (X)
converges, in distribution, to an Erlang

distribution with shape parameter k and rate parameter depending on p. In partic-
ular, one can often analytically compute the expectation of the function f under this
Erlang distribution, typically giving in a simple expression in terms of the estimand
F (p). BCFk solve this expression for F (p), which provides a formula for asymptotic
bias correction, resulting in an asymptotically unbiased estimate using a fixed value
of fixed k.

It should be noted that the estimators we study are distinct from those recently
studied by Sricharan, Raich, and Hero (2011), Sricharan, Wei, and Hero (2013), Sricha-
ran, Raich, and Hero III (2012), Moon and Hero (2014b), Moon and Hero (2014a), and
Moon (2016), which are also based on k-NN statistics. These estimators are based on
plugging consistent k-NN density estimates into the desired functional, and hence,
to be consistent, these estimates require k →∞ as n→∞. This increases the bias of
these estimators (and their computational overhead), and they thus tend to converge
more slowly than the bias-corrected estimators we study. However, Moon and Hero
(2014b) showed that the convergence rate can be accelerated somewhat by using
an ensemble of estimates (with different parameters k).2 See Kevin Moon’s Thesis
(Moon, 2016) for an extensive discussion of these estimators.

3.2 Introduction
Estimating entropies and divergences of probability distributions in a consistent
manner is of importance in a number of problems in machine learning. Entropy
estimators have applications in goodness-of-fit testing (Goria, Leonenko, Mergel,
and Novi Inverardi, 2005), parameter estimation in semi-parametric models (Wolsz-
tynski, Thierry, and Pronzato, 2005a), studying fractal random walks (Alemany and
Zanette, 1994), and texture classification (Hero, Ma, Michel, and Gorman, 2002a;
Hero, Ma, Michel, and Gorman, 2002b). Divergence estimators have been used to

2In fact, Berrett, Samworth, and Yuan (2019) recently showed how this ensemble approach can also
reduce bias of bias-corrected k-NN estimators, especially in higher dimensions.
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generalize machine learning algorithms for regression, classification, and clustering
from inputs in RD to sets and distributions (Póczos, Xiong, Sutherland, and Schnei-
der, 2012; Oliva, Poczos, and Schneider, 2013).

Divergences also include mutual informations as a special case; mutual informa-
tion estimators have applications in feature selection (Peng, Long, and Ding, 2005),
clustering (Aghagolzadeh, Soltanian-Zadeh, Araabi, and Aghagolzadeh, 2007), causal-
ity detection (Hlaváckova-Schindler, Paluŝb, Vejmelkab, and Bhattacharya, 2007),
optimal experimental design (Lewi, Butera, and Paninski, 2007; Póczos and Lőrincz,
2009), fMRI data analysis (Chai, Walther, Beck, and Fei-Fei, 2009), prediction of pro-
tein structures (Adami, 2004), and boosting and facial expression recognition Shan,
Gong, and Mcowan, 2005. Both entropy estimators and mutual information estima-
tors have been used for independent component and subspace analysis (Learned-
Miller and Fisher, 2003; Szabó, Póczos, and Lőrincz, 2007; Póczos and Lőrincz, 2005;
Hulle, 2008), as well as for image registration (Hero, Ma, Michel, and Gorman, 2002a;
Hero, Ma, Michel, and Gorman, 2002b). Further applications can be found in (Leo-
nenko, Pronzato, and Savani, 2008).

This paper considers the more general problem of estimating functionals of the
form

F (P ) := E
X∼P

[f(p(X))] , (3.1)

using n IID samples from P , where P is an unknown probability measure with
smooth density function p and f is a known smooth function. We are interested
in analyzing a class of nonparametric estimators based on k-nearest neighbor (k-
NN) distance statistics. Rather than plugging a consistent estimator of p into (3.1),
which requires k → ∞ as n → ∞, these estimators derive a bias correction for the
plug-in estimator with fixed k; hence, we refer to this type of estimator as a fixed-k
estimator. Compared to plug-in estimators, fixed-k estimators are faster to compute.
As we show, fixed-k estimators can also exhibit superior rates of convergence.

As shown in Table 3.1, several authors have derived bias corrections necessary
for fixed-k estimators of entropies and divergences, including, most famously, the
Shannon entropy estimator of (Kozachenko and Leonenko, 1987). 3 The estimators
in Table 3.1 estimators are known to be weakly consistent, 4 but, except for Shannon
entropy, no finite sample bounds are known. The main goal of this paper is to pro-
vide finite-sample analysis of these estimators, via unified analysis of the estimator
after bias correction. Specifically, we show conditions under which, for β-Hölder
continuous (β ∈ (0, 2]) densities on D dimensional space, the bias of fixed-k estima-
tors decays asO

(
n−β/D

)
and the variance decays asO

(
n−1

)
, giving a mean squared

error of O
(
n−2β/D + n−1

)
. Hence, the estimators converge at the parametric O(n−1)

rate when β ≥ D/2, and at the slower rate O(n−2β/D) otherwise. A modification of
the estimators would be necessary to leverage additional smoothness for β > 2, but
we do not pursue this here. Along the way, we prove a finite-sample version of the
useful fact (Leonenko, Pronzato, and Savani, 2008) that (normalized) k-NN distances
have an Erlang asymptotic distribution, which may be of independent interest.

Here, we present our results for distributions P supported on the unit cube in RD
because this significantly simplifies the statements of our results, but, as we discuss
in the supplement, our results generalize fairly naturally, for example to distribu-
tions supported on smooth compact manifolds. In this context, it is worth noting

3MATLAB code for these estimators is in the ITE toolbox https://bitbucket.org/szzoli/
ite/ (Szabó, 2014).

4Several of these proofs contain errors regarding the use of integral convergence theorems when
their conditions do not hold, as described in (Poczos and Schneider, 2012).

https://bitbucket.org/szzoli/ite/
https://bitbucket.org/szzoli/ite/
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Functional
Name

Functional
Form

Bias Correction Ref.

Shannon
Entropy

E [log p(X)] Add. const.:
ψ(n) − ψ(k) +
log(k/n)

Kozachenko and Leonenko
(1987)Goria, Leonenko,
Mergel, and Novi Inverardi
(2005)

Rényi-α
Entropy

E
[
pα−1(X)

]
Mult. const.:

Γ(k)
Γ(k+1−α)

Leonenko, Pronzato, and Sa-
vani (2008) and Leonenko and
Pronzato (2010)

KL
Divergence

E
[
log p(X)

q(X)

]
None∗ Wang, Kulkarni, and Verdú

(2009)

Rényi-α
Divergence

E
[(

p(X)
q(X)

)α−1
]

Mult. const.:
Γ2(k)

Γ(k−α+1)Γ(k+α−1)

Poczos and Schneider (2012)

TABLE 3.1: Functionals with known bias-corrected k-NN estima-
tors, their bias corrections, and references. All expectations are over
X ∼ P . Γ(t) =

∫∞
0
xt−1e−x dx is the gamma function, and ψ(x) =

d
dx log (Γ(x)) is the digamma function. α ∈ R\{1} is a free parameter.

∗For KL divergence, bias corrections for p and q cancel.

that our results scale with the intrinsic dimension of the manifold. As we discuss
later, we believe deriving finite sample rates for distributions with unbounded sup-
port may require a truncated modification of the estimators we study (as in (Tsy-
bakov and Meulen, 1996)), but we do not pursue this here.

3.3 Problem statement and notation
Let X := [0, 1]D denote the unit cube in RD, and let µ denote the Lebesgue measure.
Suppose P is an unknown µ-absolutely continuous Borel probability measure sup-
ported on X , and let p : X → [0,∞) denote the density of P . Consider a (known)
differentiable function f : (0,∞) → R. Given n samples X1, ..., Xn drawn IID from
P , we are interested in estimating the functional

F (P ) := E
X∼P

[f(p(X))] .

Somewhat more generally (as in divergence estimation), we may have a function
f : (0,∞)2 → R of two variables and a second unknown probability measure Q,
with density q and n IID samples Y1, ..., Yn. Then, we are interested in estimating

F (P,Q) := E
X∼P

[f(p(X), q(X))] .

Fix r ∈ [1,∞] and a positive integer k. We will work with distances induced by
the r-norm

‖x‖r :=

(
D∑
i=1

xri

)1/r

and define cD,r :=
(2Γ(1 + 1/r))D

Γ(1 +D/r)
= µ(B(0, 1)),

where B(x, ε) := {y ∈ RD : ‖x− y‖r < ε} denotes the open radius-ε ball centered at
x. Our estimators use k-nearest neighbor (k-NN) distances:
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Definition 1. (k-NN distance): Given n IID samples X1, ..., Xn from P , for x ∈ RD,
we define the k-NN distance εk(x) by εk(x) = ‖x −Xi‖r, where Xi is the kth-nearest
element (in ‖ · ‖r) of the set {X1, ..., Xn} to x. For divergence estimation, given n
samples Y1, ..., Yn fromQ, then we similarly define δk(x) by δk(x) = ‖x−Yi‖r, where
Yi is the kth-nearest element of {Y1, ..., Yn} to x.

µ-absolute continuity ofP precludes the existence of atoms (i.e., ∀x ∈ RD, P ({x}) =
µ({x}) = 0). Hence, each εk(x) > 0 a.s. We will require this to study quantities such
as log εk(x) and 1/εk(x).

3.4 Estimator

3.4.1 k-NN density estimation and plug-in functional estimators

The k-NN density estimator

p̂k(x) =
k/n

µ(B(x, εk(x))
=

k/n

cDεDk (x)

is well-studied nonparametric density estimator (Loftsgaarden and Quesenberry,
1965), motivated by noting that, for small ε > 0,

p(x) ≈ P (B(x, ε))

µ(B(x, ε))
,

and that, P (B(x, εk(x))) ≈ k/n. One can show that, for x ∈ RD at which p is contin-
uous, if k →∞ and k/n→ 0 as n→∞, then p̂k(x)→ p(x) in probability ((Loftsgaar-
den and Quesenberry, 1965), Theorem 3.1). Thus, a natural approach for estimating
F (P ) is the plug-in estimator

F̂PI :=
1

n

n∑
i=1

f (p̂k(Xi)) . (3.2)

Since p̂k → p in probability pointwise as k, n → ∞ and f is smooth, one can show
F̂PI is consistent, and in fact derive finite sample convergence rates (depending on
how k → ∞). For example, (Sricharan, Raich, and Hero, 2011) show a convergence

rate of O
(
n
−min

{
2β
β+D

,1
})

for β-Hölder continuous densities (after sample splitting

and boundary correction) by setting k � n
β
β+d .

Unfortunately, while necessary to ensure V [p̂k(x)] → 0, the requirement k → ∞
is computationally burdensome. Furthermore, increasing k can increase the bias of
p̂k due to over-smoothing (see (3.5) below), suggesting that this may be sub-optimal
for estimating F (P ). Indeed, similar work based on kernel density estimation (Singh
and Póczos, 2014a) suggests that, for plug-in functional estimation (as compared to
density estimation), under-smoothing may be preferable, since the empirical mean
results in additional smoothing.

3.4.2 Fixed-k functional estimators

An alternative approach is to fix k as n → ∞. Since F̂PI is itself an empirical mean,
unlike V [p̂k(x)], V

[
F̂PI

]
→ 0 as n→∞. The more critical complication of fixing k is
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bias. Since f is typically non-linear, the non-vanishing variance of p̂k translates into
asymptotic bias. A solution adopted by several papers is to derive a bias correction
function B (depending only on known factors) such that

E
X1,...,Xn

[
B
(
f

(
k/n

µ(B(x, εk(x))

))]
= E

X1,...,Xn

[
f

(
P (B(x, εk(x)))

µ(B(x, εk(x))

)]
. (3.3)

For continuous p, the quantity

pεk(x)(x) :=
P (B(x, εk(x)))

µ(B(x, εk(x))
(3.4)

is a consistent estimate of p(x) with k fixed, but it is not computable, since P is
unknown. The bias correction B gives us an asymptotically unbiased estimator

F̂B(P ) :=
1

n

n∑
i=1

B (f (p̂k(Xi))) =
1

n

n∑
i=1

B
(
f

(
k/n

µ(B(Xi, εk(Xi))

))
.

that uses k/n in place of P (B(x, εk(x))). This estimate extends naturally to diver-
gences:

F̂B(P,Q) :=
1

n

n∑
i=1

B (f (p̂k(Xi), q̂k(Xi))) .

As an example, if f = log (as in Shannon entropy), then it can be shown that, for
any continuous p,

E [logP (B(x, εk(x)))] = ψ(k)− ψ(n).

Hence, for Bn,k := ψ(k)− ψ(n) + log(n)− log(k),

E
X1,...,Xn

[
f

(
k/n

µ(B(x, εk(x))

)]
+Bn,k = E

X1,...,Xn

[
f

(
P (B(x, εk(x)))

µ(B(x, εk(x))

)]
.

giving the estimator of (Kozachenko and Leonenko, 1987). Other examples of func-
tionals for which the bias correction is known are given in Table 3.1.

In general, deriving an appropriate bias correction can be quite a difficult prob-
lem specific to the functional of interest, and it is not our goal presently to study this
problem; rather, we are interested in bounding the error of F̂B(P ), assuming the bias
correction is known. Hence, our results apply to all of the estimators in Table 3.1, as
well as any estimators of this form that may be derived in the future.

3.5 Related work

3.5.1 Estimating information theoretic functionals

Recently, there has been much work on analyzing estimators for entropy, mutual
information, divergences, and other functionals of densities. Besides bias-corrected
fixed-k estimators, most of this work has taken one of three approaches. One se-
ries of papers (Liu, Wasserman, and Lafferty, 2012; Singh and Póczos, 2014a; Singh
and Póczos, 2014b) studied a boundary-corrected plug-in approach based on under-
smoothed kernel density estimation. This approach has strong finite sample guar-
antees, but requires prior knowledge of the support of the density, and can have a
slow rate of convergence. A second approach (Kandasamy, Krishnamurthy, Poczos,
and Wasserman, 2015; Krishnamurthy, Kandasamy, Poczos, and Wasserman, 2014)
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uses von Mises expansion to partially correct the bias of optimally smoothed den-
sity estimates. This is statistically more efficient, but can require computationally
demanding numerical integration over the support of the density. A final line of
work (Moon and Hero, 2014b; Moon and Hero, 2014a; Sricharan, Raich, and Hero,
2011; Sricharan, Wei, and Hero, 2013) studied plug-in estimators based on consistent,
boundary corrected k-NN density estimates (i.e., with k →∞ as n→∞). (Nguyen,
Wainwright, and Jordan., 2010) study a divergence estimator based on convex risk
minimization, but this relies of the context of an RKHS, making results are difficult
to compare.

Rates of Convergence: For densities over RD satisfying a Hölder smoothness
condition parametrized by β ∈ (0,∞), the minimax mean squared error rate for
estimating functionals of the form

∫
f(p(x)) dx has been known since (Birgé and

Massart, 1995) to be O
(
n
−min

{
8β

4β+D
,1
})

. (Krishnamurthy, Kandasamy, Poczos, and

Wasserman, 2014) recently derived identical minimax rates for divergence estima-
tion.

Most of the above estimators have been shown to converge at the rateO
(
n
−min

{
2β
β+D

,1
})

.

Only the von Mises approach (Krishnamurthy, Kandasamy, Poczos, and Wasser-
man, 2014) is known to achieve the minimax rate for general β and D, but due to its
computational demand (O(2Dn3)), 5 the authors suggest using other statistically less
efficient estimators for moderate sample size. Here, we show that, for β ∈ (0, 2], bias-
corrected fixed-k estimators converge at the relatively fast rateO

(
n−min{ 2β

D
,1}
)

. For
β > 2, modifications are needed for the estimator to leverage the additional smooth-
ness of the density. Notably, this rate is adaptive; that is, it does not require selecting
a smoothing parameter depending on the unknown β; our results (Theorem 5) im-
ply the above rate is achieved for any fixed choice of k. On the other hand, since
no empirical error metric is available for cross-validation, parameter selection is an
obstacle for competing estimators.

3.5.2 Prior analysis of fixed-k estimators
As of writing this paper, the only finite-sample results for F̂B(P ) were those of
(Biau and Devroye, 2015a) for the Kozachenko-Leonenko (KL) 6 Shannon entropy
estimator. (Kozachenko and Leonenko, 1987) Theorem 7.1 of (Biau and Devroye,
2015a) shows that, if the density p has compact support, then the variance of the
KL estimator decays as O(n−1). They also claim (Theorem 7.2) to bound the bias of
the KL estimator by O(n−β), under the assumptions that p is β-Hölder continuous
(β ∈ (0, 1]), bounded away from 0, and supported on the interval [0, 1]. However, in
their proof, (Biau and Devroye, 2015a) neglect to bound the additional bias incurred
near the boundaries of [0, 1], where the density cannot simultaneously be bounded
away from 0 and continuous. In fact, because the KL estimator does not attempt to
correct for boundary bias, it is not clear that the bias should decay as O(n−β) under
these conditions; we require additional conditions at the boundary of X .

(Tsybakov and Meulen, 1996) studied a closely related entropy estimator for
which they prove

√
n-consistency. Their estimator is identical to the KL estimator,

except that it truncates k-NN distances at
√
n, replacing εk(x) with min{εk(x),

√
n}.

This sort of truncation may be necessary for certain fixed-k estimators to satisfy

5Fixed-k estimators can be computed in O
(
Dn2

)
time, or O

(
2Dn logn

)
via k-d trees for small D.

6Not to be confused with Kullback-Leibler (KL) divergence, for which we also analyze an estimator.
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finite-sample bounds for densities of unbounded support, though consistency can be
shown regardless.

Finally, two very recent papers (Gao, Oh, and Viswanath, 2017a; Berrett, Sam-
worth, and Yuan, 2019) have analyzed the KL estimator. In this case, (Gao, Oh, and
Viswanath, 2017a) generalize the results of (Biau and Devroye, 2015a) to D > 1,
and (Berrett, Samworth, and Yuan, 2019) weaken the regularity and boundary as-
sumptions required by our bias bound, while deriving the same rate of convergence.
Moreover, they show that, if k increases with n at the rate k � log5 n, the KL estima-
tor is asymptotically efficient (i.e., asymptotically normal, with optimal asymptotic
variance). As explained in Section 3.9, together with our results this elucidates the
role of k in the KL estimator: fixing k optimizes the convergence rate of the estimator,
but increasing k slowly can further improve error by constant factors.

3.6 Discussion of assumptions
The lack of finite-sample results for fixed-k estimators is due to several technical
challenges. Here, we discuss some of these challenges, motivating the assumptions
we make to overcome them.

First, these estimators are sensitive to regions of low probability (i.e., p(x) small),
for two reasons:

1. Many functions f of interest (e.g., f = log or f(z) = zα, α < 0) have singulari-
ties at 0.

2. The k-NN estimate p̂k(x) of p(x) is highly biased when p(x) is small. For ex-
ample, for p β-Hölder continuous (β ∈ (0, 2]), one has ((Mack and Rosenblatt,
1979), Theorem 2)

Bias(p̂k(x)) �
(

k

np(x)

)β/D
. (3.5)

For these reasons, it is common in analysis of k-NN estimators to assume the follow-
ing (Biau and Devroye, 2015a; Poczos and Schneider, 2012):
(A1) p is bounded away from zero on its support. That is, p∗ := infx∈X p(x) > 0.
Second, unlike many functional estimators (see e.g., (Pál, Póczos, and Szepesvári,
2010; Sricharan, Raich, and Hero III, 2012; Singh and Póczos, 2014a)), the fixed-k
estimators we consider do not attempt correct for boundary bias (i.e., bias incurred
due to discontinuity of p on the boundary ∂X of X ). 7 The boundary bias of the
density estimate p̂k(x) does vanish at x in the interior X ◦ of X as n → ∞, but addi-
tional assumptions are needed to obtain finite-sample rates. Either of the following
assumptions would suffice:
(A2) p is continuous not only on X ◦ but also on ∂X (i.e., p(x) → 0 as dist(x, ∂X ) →

0).

(A3) p is supported on all of RD. That is, the support of p has no boundary. This is
the approach of (Tsybakov and Meulen, 1996), but we reiterate that, to handle
an unbounded domain, they require truncating εk(x).

Unfortunately, both assumptions (A2) and (A3) are inconsistent with (A1). Our ap-
proach is to assume (A2) and replace assumption (A1) with a much milder assump-
tion that p is locally lower bounded on its support in the following sense:
(A4) There exist ρ > 0 and a function p∗ : X → (0,∞) such that, for all x ∈ X , r ∈

(0, ρ], p∗(x) ≤ P (B(x,r))
µ(B(x,r)) .

7This complication was omitted in the bias bound (Theorem 7.2) of (Biau and Devroye, 2015a) for
entropy estimation.
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We show in Lemma 2 that assumption (A4) is in fact very mild; in a metric measure
space of positive dimension D, as long as p is continuous on X , such a p∗ exists for
any desired ρ > 0. For simplicity, we will use ρ =

√
D = diam(X ).

As hinted by (3.5) and the fact that F (P ) is an expectation, our bounds will con-
tain terms of the form

E
X∼P

[
1

(p∗(X))β/D

]
=

∫
X

p(x)

(p∗(x))β/D
dµ(x)

(with an additional f ′(p∗(x)) factor if f has a singularity at zero). Hence, our key
assumption is that these quantities are finite. This depends primarily on how quickly
p approaches zero near ∂X . For many functionals, Lemma 6 gives a simple sufficient
condition.

3.7 Preliminary lemmas
Here, we present some lemmas, both as a means of summarizing our proof tech-
niques and also because they may be of independent interest for proving finite-
sample bounds for other k-NN methods. Due to space constraints, all proofs are
given in the appendix. Our first lemma states that, if p is continuous, then it is lo-
cally lower bounded as described in the previous section.

Lemma 2. (Existence of Local Bounds) If p is continuous on X and strictly positive on
the interior X ◦ of X , then, for ρ :=

√
D = diam(X ), there exists a continuous function

p∗ : X ◦ → (0,∞) and a constant p∗ ∈ (0,∞) such that

0 < p∗(x) ≤ P (B(x, r))

µ(B(x, r))
≤ p∗ <∞, ∀x ∈ X , r ∈ (0, ρ].

We now use these local lower and upper bounds to prove that k-NN distances
concentrate around a term of order (k/(np(x)))1/D. Related lemmas, also based on
multiplicative Chernoff bounds, are used by (Kpotufe and Luxburg, 2011; Chaud-
huri, Dasgupta, Kpotufe, and Luxburg, 2014) and (Chaudhuri and Dasgupta, 2014;
Kontorovich and Weiss, 2015) to prove finite-sample bounds on k-NN methods for
cluster tree pruning and classification, respectively. For cluster tree pruning, the
relevant inequalities bound the error of the k-NN density estimate, and, for classifi-
cation, they lower bound the probability of nearby samples of the same class. Unlike
in cluster tree pruning, we are not using a consistent density estimate, and, unlike in
classification, our estimator is a function of k-NN distances themselves (rather than
their ordering). Thus, our statement is somewhat different, bounding the k-NN dis-
tances themselves:

Lemma 3. (Concentration of k-NN Distances) Suppose p is continuous on X and
strictly positive on X ◦. Let p∗ and p∗ be as in Lemma 2. Then, for any x ∈ X ◦,

1. if r >
(

k
p∗(x)n

)1/D
, then P [εk(x) > r] ≤ e−p∗(x)rDn

(
e
p∗(x)rDn

k

)k
.

2. if r ∈
[
0,
(

k
p∗n

)1/D
)

, then P [εk(x) < r] ≤ e−p∗(x)rDn

(
ep∗rDn

k

)kp∗(x)/p∗

.

It is worth noting an asymmetry in the above bounds: counter-intuitively, the
lower bound depends on p∗. This asymmetry is related to the large bias of k-NN
density estimators when p is small (as in (3.5)).



3.8. Main results 31

The next lemma uses Lemma 3 to bound expectations of monotone functions of
the ratio p̂k/p∗. As suggested by the form of integrals (3.6) and (3.7), this is essentially
a finite-sample statement of the fact that (appropriately normalized) k-NN distances
have Erlang asymptotic distributions; this asymptotic statement is key to consis-
tency proofs of (Leonenko, Pronzato, and Savani, 2008) and (Poczos and Schneider,
2012) for α-entropy and divergence estimators.

Lemma 4. Let p be continuous on X and strictly positive on X ◦. Define p∗ and p∗ as in
Lemma 2. Suppose f : (0,∞) → R is continuously differentiable and f ′ > 0. Then, we
have the upper bound 8

sup
x∈X ◦

E
[
f+

(
p∗(x)

p̂k(x)

)]
≤ f+(1) + e

√
k

∫ ∞
k

e−yyk

Γ(k + 1)
f+

(y
k

)
dy, (3.6)

and, for all x ∈ X ◦, for κ(x) := kp∗(x)/p∗, the lower bound

E
[
f−

(
p∗(x)

p̂k(x)

)]
≤ f−(1) + e

√
k

κ(x)

∫ κ(x)

0

e−yyκ(x)

Γ(κ(x) + 1)
f−

(y
k

)
dy (3.7)

Note that plugging the function z 7→ f

((
kz

cD,rnp∗(x)

) 1
D

)
into Lemma 4 gives

bounds on E [f(εk(x))]. As one might guess from Lemma 3 and the assumption that

f is smooth, this bound is roughly of the order �
(

k
np(x)

) 1
D . For example, for any

α > 0, a simple calculation from (3.6) gives

E [εαk (x)] ≤
(

1 +
α

D

)( k

cD,rnp∗(x)

) α
D

. (3.8)

(3.8) is used for our bias bound, and more direct applications of Lemma 4 are used
in variance bound.

3.8 Main results
Here, we present our main results on the bias and variance of F̂B(P ). Again, due to
space constraints, all proofs are given in the appendix. We begin with bounding the
bias:

Theorem 5. (Bias Bound) Suppose that, for some β ∈ (0, 2], p is β-Hölder continuous
with constant L > 0 on X , and p is strictly positive on X ◦. Let p∗ and p∗ be as in Lemma 2.
Let f : (0,∞)→ R be differentiable, and define Mf,p : X → [0,∞) by

Mf,p(x) := sup
z∈[p∗(x),p∗]

∣∣∣∣ ddz f(z)

∣∣∣∣
Assume

Cf := E
X∼p

[
Mf,p(X)

(p∗(X))
β
D

]
<∞. Then,

∣∣∣E F̂B(P )− F (P )
∣∣∣ ≤ CfL(k

n

) β
D

.

8f+(x) = max{0, f(x)} and f−(x) = −min{0, f(x)} denote the positive and negative parts of f .
Recall that E [f(X)] = E [f+(X)]− E [f−(X)].
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The statement for divergences is similar, assuming that q is also β-Hölder con-
tinuous with constant L and strictly positive on X ◦. Specifically, we get the same
bound if we replace Mf,o with

Mf,p(x) := sup
(w,z)∈[p∗(x),p∗]×[q∗(x),q∗]

∣∣∣∣ ∂∂wf(w, z)

∣∣∣∣
and define Mf,q similarly (i.e., with ∂

∂z ) and we assume that

Cf := E
X∼p

[
Mf,p(X)

(p∗(X))
β
D

]
+ E
X∼p

[
Mf,q(X)

(q∗(X))
β
D

]
<∞.

As an example of the applicability of Theorem 5, consider estimating the Shan-
non entropy. Then, f(z) = log(x), and so we need Cf =

∫
X (p∗(x))−β/D dµ(x) <∞.

The assumption Cf < ∞ is not immediately transparent. For the functionals
in Table 3.1, Cf has the form

∫
X (p(x))−c dx, for some c > 0, and hence Cf < ∞

intuitively means p(x) cannot approach zero too quickly as dist(x, ∂X ) → 0. The
following lemma gives a formal sufficient condition:

Lemma 6. (Boundary Condition) Let c > 0. Suppose there exist b∂ ∈ (0, 1
c ), c∂ , ρ∂ >

0 such that, for all x ∈ X with ε(x) := dist(x, ∂X ) < ρ∂ , p(x) ≥ c∂ε
b∂ (x). Then,∫

X (p∗(x))−c dµ(x) <∞.

In the supplement, we give examples showing that this condition is fairly gen-
eral, satisfied by densities proportional to xb∂ near ∂X (i.e., those with at least b∂
nonzero one-sided derivatives on the boundary).

We now bound the variance. The main obstacle here is that the fixed-k esti-
mator is an empirical mean of dependent terms (functions of k-NN distances). We
generalize the approach used by (Biau and Devroye, 2015a) to bound the variance
of the KL estimator of Shannon entropy. The key insight is the geometric fact that,
in (RD, ‖ · ‖p), there exists a constant Nk,D (independent of n) such that any sample
Xi can be amongst the k-nearest neighbors of at most Nk,D other samples. Hence, at
mostNk,D+1 of the terms in (3.2) can change when a singleXi is added, suggesting a
variance bound via the Efron-Stein inequality (Efron and Stein, 1981), which bounds
the variance of a function of random variables in terms of its expected change when
its arguments are resampled. (Evans, 2008) originally used this approach to prove
a general Law of Large Numbers (LLN) for nearest-neighbors statistics. Unfortu-
nately, this LLN relies on bounded kurtosis assumptions that are difficult to justify
for the log or negative power statistics we study.

Theorem 7. (Variance Bound) Suppose B ◦ f is continuously differentiable and strictly
monotone. Assume Cf,p := EX∼P

[
B2(f(p∗(X)))

]
<∞, and Cf :=

∫∞
0 e−yykf(y) <∞.

Then, for

CV := 2 (1 +Nk,D) (3 + 4k) (Cf,p + Cf ) , we have V
[
F̂B(P )

]
≤ CV

n
.

As an example, if f = log (as in Shannon entropy), then, since B is an additive
constant, we simply require

∫
X p(x) log2(p∗(x)) <∞. In general, Nk,D is of the order

k2cD, for some c > 0. Our bound is likely quite loose in k; in practice, V
[
F̂B(P )

]
typically decreases somewhat with k.



3.9. Conclusions and discussion 33

3.9 Conclusions and discussion
In this paper, we gave finite-sample bias and variance error bounds for a class of
fixed-k estimators of functionals of probability density functions, including the en-
tropy and divergence estimators in Table 3.1. The bias and variance bounds in turn
imply a bound on the mean squared error (MSE) of the bias-corrected estimator via
the usual decomposition into squared bias and variance:

Corollary 8. (MSE Bound) Under the conditions of Theorems 5 and 7,

E
[(
F̂B(P )− F (P )

)2
]
≤ C2

fL
2

(
k

n

)2β/D

+
CV
n
. (3.9)

Choosing k: Contrary to the name, fixing k is not required for “fixed-k” estima-
tors. (Pérez-Cruz, 2009) empirically studied the effect of changing k with n and
found that fixing k = 1 gave best results for estimating F (P ). However, there has
been no theoretical justification for fixing k. Assuming tightness of our bias bound in
k, we provide this in a worst-case sense: since our bias bound is nondecreasing in k
and our variance bound is no larger than the minimax MSE rate for these estimation
problems, reducing variance (i.e., increasing k) does not improve the (worst-case)
convergence rate. On the other hand, (Berrett, Samworth, and Yuan, 2019) recently
showed that slowly increasing k can improves the asymptotic variance of the esti-
mator, with the rate k � log5 n leading to asymptotic efficiency. In view of these
results, we suggest that increasing k can improve error by constant factors, but can-
not improve the convergence rate.

Finally, we note that (Pérez-Cruz, 2009) found increasing k quickly (e.g., k = n/2)
was best for certain hypothesis tests based on these estimators. Intuitively, this is
because, in testing problems, bias is less problematic than variance (e.g., an asymp-
totically biased estimator can still lead to a consistent test).

3.10 A More General Setting

In the main paper, for the sake of clarity, we discussed only the setting of distri-
butions on the D-dimensional unit cube [0, 1]D. For sake of generality, we prove
our results in the significantly more general setting of a set equipped with a metric,
a base measure, a probability density, and an appropriate definition of dimension.
This setting subsumes Euclidean spaces, in which k-NN methods are usually ana-
lyzed, but also includes, for instance, Riemannian manifolds.

Definition 1. (Metric Measure Space): A quadruple (X, d,Σ, µ) is called a metric
measure space if (X, d) is a complete metric space, (X,Σ, µ) is a σ-finite measure space,
and Σ contains the Borel σ-algebra induced by d.

Definition 2. (Scaling Dimension): A metric measure space (X, d,Σ, µ) has scaling
dimension D ∈ [0,∞) if there exist constants µ∗, µ∗ > 0 such that, ∀r > 0, x ∈ X,
µ∗ ≤ µ(B(x,r))

rD
≤ µ∗. 9

Remark 3. The above definition of dimension coincides with D in RD, where, under
the Lp metric and Lebesgue measure,

µ∗ = µ∗ =
(2Γ(1 + 1/p))D

Γ(1 +D/p)

9B(x, r) := {y ∈ X : d(x, y) < r} denotes the open ball of radius r centered at x.
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is the usual volume of the unit ball. However, it is considerably more general than
the vector-space definition of dimension. It includes, for example, the case that X
is a smooth Riemannian manifold, with the standard metric and measure induced
by the Riemann metric. In this case, our results scale with the intrinsic dimension of
data, rather than the dimension of a space in which the data are embedded. Often,
µ∗ = µ∗, but leaving these distinct allows, for example, manifolds with boundary.
The scaling dimension is slightly more restrictive than the well-studied doubling
dimension of a measure, (Luukkainen and Saksman, 1998) which enforces only an
upper bound on the rate of growth.

3.11 Proofs of Lemmas

Lemma 2. Consider a metric measure space (X, d,Σ, µ) of scaling dimension D, and a
µ-absolutely continuous probability measure P , with density function p : X → [0,∞)
supported on

X := {x ∈ X : p(x) > 0}.

If p is continuous on X , then, for any ρ > 0, there exists a function p∗ : X → (0,∞) such
that

0 < p∗(x) ≤ inf
r∈(0,ρ]

P (B(x, r))

µ(B(x, r))
, ∀x ∈ X ,

and, if p is bounded above by p∗ := supx∈X p(x) <∞, then

sup
r∈(0,ρ]

P (B(x, r))

µ(B(x, r))
≤ p∗ <∞, ∀r ∈ (0, ρ],

Proof: Let x ∈ X . Since p is continuous and strictly positive at x, there exists
ε ∈ (0, ρ] such that and, for all y ∈ B(x, ε), p(y) ≥ p(x)/2 > 0. Define

p∗(x) :=
p(x)

2

µ∗
µ∗

(
ε

ρ

)D
.

Then, for any r ∈ (0, ρ], since P is a non-negative measure, and µ has scaling dimen-
sion D,

P (B(x, r)) ≥ P (B(x, εr/ρ)) ≥ µ(B(x, εr/ρ)) min
y∈B(x,εr/ρ)

p(y)

≥ µ(B(x, εr/ρ))
p(x)

2

≥ p(x)

2
µ∗

(
εr

ρ

)D
= p∗(x)µ∗rD ≥ p∗(x)µ(B(x, r)).

Also, trivially, ∀r ∈ (0, ρ],

P (B(x, r)) ≤ µ(B(x, r)) max
y∈B(x,rρ/ε)

p(y) ≤ p∗(x)µ(B(x, r)).

Lemma 3. Consider a metric measure space (X, d,Σ, µ) of scaling dimension D, and a µ-
absolutely continuous probability measure P , with continuous density function p : X →
[0,∞) supported on

X := {x ∈ X : p(x) > 0}.
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For x ∈ X , if r >
(

k
p∗(x)n

)1/D
, then

P [εk(x) > r] ≤ e−p∗(x)rDn

(
e
p∗(x)rDn

k

)k
.

and, if r ∈
[
0,
(

k
p∗n

)1/D
)

, then

P [εk(x) ≤ r] ≤ e−p∗(x)rDn

(
ep∗rDn

k

)kp∗(x)/p∗

.

Proof: Notice that, for all x ∈ X and r > 0,

n∑
i=1

1{Xi∈B(x,r)} ∼ Binomial (n, P (B(x, r))) ,

and hence that many standard concentration inequalities apply. Since we are inter-
ested in small r (and hence small P (B(x, r))), we prefer bounds on relative error, and
hence apply multiplicative Chernoff bounds. If r > (k/(p∗(x)n))1/D, then, by defi-
nition of p∗, P (B(x, r)) < k/n, and so, applying the multiplicative Chernoff bound
with δ := p∗(x)rDn−k

p∗(x)rDn
> 0 gives

P [εk(x) > r] = P

[
n∑
i=1

1{Xi∈B(x,r)} < k

]

≤ P

[
n∑
i=1

1{Xi∈B(x,r)} < (1− δ)nP (B(x, r))

]

≤
(

e−δ

(1− δ)(1−δ)

)nP (B(x,r))

= e−p∗(x)rDn

(
ep∗(x)rDn

k

)k
.

Similarly, if r < (k/(p∗n))1/D, then, applying the multiplicative Chernoff bound with
δ := k−p∗rDn

p∗rDn
> 0,

P [εk(x) < r] = P

[
n∑
i=1

1{Xi∈B(x,r)} ≥ k

]

≤ P

[
n∑
i=1

1{Xi∈B(x,r)} ≥ (1 + δ)nP (B(x, r))

]

≤
(

eδ

(1 + δ)(1+δ)

)nP (B(x,r))

≤ e−p∗(x)rDn

(
ep∗rDn

k

)kp∗(x)/p∗
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The bound we prove below is written in a somewhat different form from the
version of Lemma 4 in the main paper. This form follows somewhat more intuitively
from Lemma 3, but does not make obvious the connection to the asymptotic Erlang
distribution. To derive the form in the paper, one simply integrates the integral
below by parts, plugs in the function x 7→ f

(
p∗(x)

/
k/n

cDε
D
k (x)

)
, and applies the bound

(e/k)k ≤ e√
kΓ(k)

.

Lemma 4. Consider the setting of Lemma 3 and assume X is compact with diameter ρ :=
supx,y∈X d(x, y). Suppose f : (0, ρ)→ R is continuously differentiable, with f ′ > 0. Then,
for any x ∈ X , we have the upper bound

E [f+(εk(x))] ≤ f+

((
k

p∗(x)n

) 1
D

)
+

(e/k)k

D(np∗(x))
1
D

∫ np∗(x)ρD

k
e−yy

Dk+1−D
D f ′

((
y

np∗(x)

) 1
D

)
dy

(3.10)

and the lower bound

E [f−(εk(x))] ≤ f−

((
k

p∗n

) 1
D

)
+

(e/κ(x))κ(x)

D (np∗(x))
1
D

∫ κ(x)

0
e−yy

Dκ(x)+1−D
D f ′

((
y

np∗(x)

) 1
D

)
dy,

(3.11)

where f+(x) = max{0, f(x)} and f−(x) = −min{0, f(x)} denote the positive and nega-
tive parts of f , respectively, and κ(x) := kp∗(x)/p∗.

Proof: For notational simplicity, we prove the statement for g(x) = f
(
np∗(x)xD

)
;

the main result follows by substituting f back in.
Define

ε+
0 = f+

((
k

p∗(x)n

) 1
D

)
and ε−0 = f−

((
k

p∗n

) 1
D

)
.

Writing the expectation in terms of the survival function,

E [f+(εk(x))] =

∫ ∞
0

P [f(εk(x)) > ε] dε

=

∫ ε+0

0
P [f(εk(x)) > ε] dε+

∫ f+(ρ)

ε+0

P [f(εk(x)) > ε] dε,

≤ ε+
0 +

∫ f+(ρ)

ε+0

P [f(εk(x)) > ε] dε, (3.12)

since f is non-decreasing and P [εk(x) > ρ] = 0. By construction of ε+
0 , for all ε > ε+

0 ,
f−1(ε) > (k/(p∗(x)n))1/D. Hence, applying Lemma 3 followed by the change of
variables y = np∗(x)

(
f−1(ε)

)D gives 10

∫ f+(ρ)

ε+0

P
[
εk(x) > f−1(ε)

]
dε ≤

∫ f+(ρ)

ε+0

e−np∗(x)(f−1(ε))
D

(
enp∗(x)

(
f−1(ε)

)D
k

)k
dε

=
(e/k)k

D(np∗(x))
1
D

∫ np∗(x)ρD

k
e−yy

kD+1−D
D f ′

((
y

np∗(x)

) 1
D

)
dy,

10f need not be surjective, but the generalized inverse f−1 : [−∞,∞]→ [0,∞] defined by f−1(ε) :=
inf{x ∈ (0,∞) : f(x) ≥ ε} suffices here.
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Together with (3.12), this gives the upper bound (3.10). Similar steps give

E [f(εk(x))] ≤ ε−0 +

∫ f−(0)

ε−0

P [f(εk(x)) < −ε] dε. (3.13)

Applying Lemma 3 followed the change of variables y = np∗(x)
(
f−1(−ε)

)D gives

∫ f−(ρ)

ε−0

P
[
εk(x) < f−1(−ε)

]
dε ≤ (e/κ(x))κ(x)

D (np∗(x))
1
D

∫ κ(x)

0
e−yy

Dκ(x)+1−D
D f ′

((
y

np∗(x)

) 1
D

)
dy

Together with inequality (3.13), this gives the result (3.11).

3.11.1 Applications of Lemma 4

When f(x) = log(x), (3.10) gives

E
[
log+(εk(x))

]
≤ 1

D
log+

(
k

p∗(x)n

)
+
( e
k

)k Γ(k, k)

D
≤ 1

D

(
log+

(
k

p∗(x)n

)
+ 1

)
and (3.11) gives 11

E
[
log−(εk(x))

]
≤ 1

D

(
log−

(
k

p∗n

)
+

(
e

κ(x)

)κ(x)

γ(κ(x), κ(x))

)
(3.14)

≤ 1

D

(
log−

(
k

p∗n

)
+

1

κ(x)

)
. (3.15)

For α > 0, f(x) = xα, (3.10) gives

E [εαk (x)] ≤
(

k

p∗(x)n

) α
D

+
( e
k

)k αΓ (k + α/D, k)

D(np∗(x))α/D

≤ C2

(
k

p∗(x)n

) α
D

, (3.16)

where C2 = 1 + α
D . For any α ∈ [−Dκ(x), 0], when f(x) = −xα, (3.11) gives

E [εαk (x)] ≤
(

k

p∗n

) α
D

+

(
e

κ(x)

)κ(x) αγ (κ(x) + α/D, κ(x))

D(np∗(x))α/D
(3.17)

≤ C3

(
k

p∗n

) α
D

, (3.18)

where C3 = 1 + α
Dκ(x)+α .

11Γ(s, x) :=
∫∞
x
ts−1e−t dt and γ(s, x) :=

∫ x
0
ts−1e−t dt denote the upper and lower incomplete

Gamma functions respectively. We used the bounds Γ(s, x), xγ(s, x) ≤ xse−x.
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3.12 Proof of Bias Bound

Theorem 5. Consider the setting of Lemma 3. Suppose Suppose p is β-Hölder continuous,
for some β ∈ (0, 2]. Let f : (0,∞)→ R be differentiable, and define Mf : X → [0,∞) by

Mf (x) := sup
z∈
[
p∗(x)
µ∗ , p

∗
µ∗

] ‖∇f(z)‖

(assuming this quantity is finite for almost all x ∈ X ). Suppose that

CM := E
X∼p

[
Mf (X)

(p∗(X))
β
D

]
<∞.

Then, for CB := CML,∣∣∣∣ E
X,X1,...,Xn∼P

[
f(pεk(X)(X))

]
− F (p)

∣∣∣∣ ≤ CB (kn
) β
D

.

Proof: By construction of p∗ and p∗,

p∗(x) ≤ pε(x) =
P (B(x, ε))

µ(B(x, ε))
≤ p∗.

Also, by the Lebesgue differentiation theorem (Lebesgue, 1910), for µ-almost all x ∈
X ,

p∗(x) ≤ p(x) ≤ p∗.

For all x ∈ X , applying the mean value theorem followed by inequality (3.16),

E
X1,...,Xn∼p

[∣∣f(p(x))− f(pεk(x)(x))
∣∣] ≤ E

X1,...,Xn∼p

[
‖∇f(ξ(x))‖

∣∣p(x)− pεk(x)(x)
∣∣]

≤Mf (x) E
X1,...,Xn∼p

[∣∣p(x)− pεk(x)(x)
∣∣]

≤
Mf (x)LD

D + β
E

X1,...,Xn∼P

[
εβk(x)

]
≤
C2Mf (x)LD

D + β

(
k

p∗(x)n

) β
D

Hence,∣∣∣∣ E
X1,...,Xn∼p

[
F (p)− F̂ (p)

]∣∣∣∣ =

∣∣∣∣ E
X∼p

[
E

X1,...,Xn∼p

[
f(p(X))− f(pεk(X)(X))

]]∣∣∣∣
≤ C2LD

D + β
E

X∼p

[
Mf (X)

(p∗(X))
β
D

](
k

n

) β
D

=
C2CMLD

D + β

(
k

n

) β
D

.

Lemma 6. Let c > 0. Suppose there exist b∂ ∈ (0, 1
c ), c∂ , ρ∂ > 0 such that for all x ∈ X

with ε(x) := dist(x, ∂X ) < ρ∂ , p(x) ≥ c∂εb∂ (x). Then,∫
X

(p∗(x))−c dµ(x) <∞.



3.13. Proof of Variance Bound 39

Proof: Let X∂ := {x ∈ X : dist(x, ∂X ) < ρ∂} denote the region within ρ∂ of ∂X .
Since p∗ is continuous and strictly positive on the compact set X\X∂ , it has a positive
lower bound ` := infx∈X\X∂ on this set, and it suffices to show∫

X\X∂
(p∗(x))−c dµ(x) <∞.

For all x ∈ X∂ ,

p∗(x) ≥ min{`, c∂εb∂ (x)}
µ(B(x,

√
D))

.

Hence, ∫
X\X∂

(p∗(x))−c dµ(x) ≤
∫
X\X∂

`−c dµ(x) +

∫
X\X∂

c−c∂ ε−b∂/c(x) dµ(x).

The first integral is trivially bounded by `−c. Since ∂X is the union of 2D “squares”
of dimension D− 1, the second integral can be reduced to the sum of 2D integrals of
dimension 1, giving the bound

2Dc−c∂

∫ ρ∂

0
x−b∂/c(x) dx.

Since b∂/c < 1, the integral is finite.
For concreteness, we give an illustrative example of how Lemma 6 is useful.
Example: Consider the one-dimensional density p(x) = (α + 1)xα on (0, 1).

Though the lower bound p∗ provided by Lemma 2 is somewhat loose in this case,
notice that, for x < r ∈ (0, 1),

P (B(x, r))

µ(B(x, r))
≥ (x+ r)α+1

2r
≥ (x(1 + 1/α))α+1

2x/α
=
α(1 + 1/α)α+1

2
xα,

and, for r < x ∈ (0, 1),

P (B(x, r))

µ(B(x, r))
=

(x+ r)α+1 − (x− r)α+1

2r
≥ 2rxα

2r
= xα.

In either case, for Cα := min
{

1, α(1 + 1/α)α+1/2
}

, we have

p∗(x) := Cαx
σ ≤ P (B(x, r))

µ(B(x, r))
.

Thus, we have a local lower bound p∗ of the form in Lemma, satisfying the condi-
tions of Lemma 6 with b∂ = α.

Now consider more general densities p on (0, 1). If p(0) = 0 and p is right-
differentiable at 0 with limh→0

p(h)
h > 0 (i.e., the one-sided Taylor expansion of p at

0 has a non-zero first-order coefficient), then, near 0, p is proportional to x. This
intuition can be formalized to show that the example above extends to quite general
distributions.
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FIGURE 3.2: Illustrations of kissing numbers N1,2 = 6 and N1,3 = 12,
which bound the number of points for which any fixed point can be
the nearest neighbor. The existence of such a constant, together with
the Efron-Stein inequality, form the basis for bounds on the variance

of BCFk estimators.

3.13 Proof of Variance Bound

Theorem 7. (Variance Bound) Suppose that B ◦ f is continuously differentiable and
strictly monotone. Let Nk,D denote the maximum number of points of which a fixed point
x can be the k-nearest neighbor. Note that this constant depending only on the geometry
of the sample space, as an example, when k = 1, Nk,D is precisely the kissing number in
RD, illustrated in Figure 3.2. Assume that Cf,p := EX∼P

[
B2(f(p∗(X)))

]
< ∞, and that

Cf :=
∫∞

0 e−yykf(y) <∞. Then, for

CV := 2 (1 +Nk,D) (3 + 4k) (Cf,p + Cf ) , we have V
[
F̂B(P )

]
≤ CV

n
.

Proof: For convenience, define

Hi := B
(
f

(
k/n

µ (B(Xi, εk(Xi)))

))
.

By the Efron-Stein inequality (Efron and Stein, 1981) and the fact that the F̂B(P ) is
symmetric in X1, . . . , Xn,

V
[
F̂B(P )

]
≤ n

2
E
[(
F̂B(P )− F ′B(P )

)2
]

≤ nE
[(
F̂B(P )− F2:n

)2
+
(
F̂ ′B(P )− F2:n

)2
]

= 2nE
[(
F̂B(P )− F2:n

)2
]
,

where F̂ ′B(P ) denotes the estimator after X1 is resampled, and F2:n := 1
n

∑n
i=2Hi.

Then,

n(F̂n(P )− F2:n) = H1 +
n∑
i=2

1Ei
(
Hi −H ′i

)
,
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where 1Ei is the indicator function of the event Ei = {εk(Xi) 6= ε′k(Xi)}. By Cauchy-
Schwarz followed by the definition of Nk,D,

n2(F̂n(P )− F̂n−1(P ))2 =

(
1 +

n∑
i=2

1Ei

)(
H2

1 +
n∑
i=2

1Ei
(
Hi −H ′i

)2)

= (1 +Nk,D)

(
H2

1 +
n∑
i=2

1Ei
(
Hi −H ′i

)2)

≤ (1 +Nk,D)

(
H2

1 + 2
n∑
i=2

1Ei
(
H2
i +H ′2i

))
.

Taking expectations, since the terms in the summation are identically distributed,
we need to bound

E
[
H2

1

]
, (3.19)

(n− 1)E
[
1E2H

2
2

]
(3.20)

and (n− 1)E
[
1E2H

′2
2

]
. (3.21)

Bounding (3.19): Note that

E
[
H2

1

]
= E

[
B2 (f (p̂k(X1)))

]
= E

[
B2

(
g

(
p∗(x)

p̂k(x)

))]
for g(y) = f (p∗(x)/y). Applying the upper bound in Lemma 4, if B2 ◦g is increasing,

E
[
H2

1

]
≤ B2(g(1)) +

e
√
k

Γ(k + 1)
C↑ = B2(f(p∗(x))) +

e
√
k

Γ(k + 1)
C↑.

If B2 ◦ g is decreasing, we instead use the lower bound in Lemma 4, giving a similar
result. If B2 ◦g is not monotone (i.e., if B◦g takes both negative and positive values),
then, since B ◦ f is monotone (by assumption), we can apply the above steps to
(B ◦ g)− and (B ◦ g)+, which are monotone, and add the resulting bounds.

Bounding (3.20): Since {εk(X2) 6= ε′k(X2)} is precisely the event that X1 is
amongst the k-NN of X2, P [εk(Xi) 6= ε′k(Xi)] = k/(n − 1). Thus, since E2 is in-
dependent of εk(X2) and

(n− 1)E
[
1E2H

2
2

]
= (n− 1)E [1E2 ]E

[
H2

2

]
= kE

[
H2

2

]
= kE

[
H2

1

]
,

and we can use the bound for (3.19).
Bounding (3.21): Since E2 is independent of εk+1(X2) and

(n− 1)E
[
1E2H

′2
2

]
= (n− 1)E

[
1E2B2 (f (p̂k+1(X2)))

]
= (n− 1)E [1E2 ]E

[
B2 (f (p̂k+1(X2)))

]
= kE

[
B2 (f (p̂k+1(X2)))

]
.

Hence, we can again use the same bound as for (3.19), except with k+ 1 instead of k.
Combining these three terms gives the final result.
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Chapter 4

Nonparanormal Information
Estimation

4.1 Introduction

In the previous chapters, while estimating information theoretic quantities, we’ve
striven to make minimal assumptions on the distribution of the data, focusing on
Hölder- or Sobolev-type smoothness assumptions. Unfortunately, minimax conver-
gence rates under these weak assumptions scale very poorly with the dimension;
the number of samples required to guarantee an MSE of at most ε > 0 scales, for
some constant c > 0, as ε−cD. Quite simply, these spaces are too large to estimate
their parameters except in very low dimensions. Empirically, it has been found that
information estimators for this setting fail to converge at realistic sample sizes in all
but very low dimensions. Moreover, most nonparametric estimators are sensitive to
tuning of bandwidth parameters, which is problematic for information estimation,
since empirical error estimates are typically not available to enable cross-validation.

At another extreme, for Gaussian data, Cai, Liang, and Zhou (2015) have shown
that consistent, parameter-free information estimation is tractable even in the high-
dimensional case where D increases quickly with n (specifically, as long as D/n →
0). However, optimal estimators for the Gaussian setting rely strongly on the as-
sumption of joint Gaussianity, and their performance can degrade quickly when the
data deviate from Gaussian. Especially in high dimensions, it is unlikely that data
are jointly Gaussian, making these estimators brittle in practice.

Given these factors, though the nonparametric and Gaussian cases are fairly well
understood in theory, there remains a lack of practical information estimators for the
common case where data are neither exactly Gaussian nor very low-dimensional.
The main goal of this chapter is to fill the gap between these two extreme settings
by studying information estimation in a semiparametric compromise between the
two, known as the “nonparanormal” (a.k.a. “Gaussian copula”) model (see Defini-
tion 9 below). The nonparanormal model, analogous to the additive model popular
in regression (Friedman and Stuetzle, 1981), limits complexity of interactions among
variables but makes minimal assumptions on the marginal distribution of each vari-
able. The result scales better with dimension than nonparametric models, while
being more robust than Gaussian models.

4.2 Problem statement and notation

There are a number of distinct generalizations of mutual information to more than
two variables. The definition we consider is simply the difference between the sum
of marginal entropies and the joint entropy:
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Definition 8. (Multivariate mutual information) Let X1, . . . , XD be R-valued ran-
dom variables with a joint probability density p : RD → [0,∞) and marginal
densities p1, ..., pD : R → [0,∞). The multivariate mutual information I(X) of X =
(X1, . . . , XD) is defined by

I(X) := E
X∼p

[
log

(
p(X)∏D

j=1 pj(Xj)

)]

=

D∑
j=1

H(Xj)−H(X), (4.1)

where H(X) = −EX∼p[log p(X)] denotes entropy of X .

This notion of multivariate mutual information, originally due to Watanabe (1960)
(who called it “total correlation”) measures total dependency, or redundancy, within
a set ofD random variables. It has also been called the “multivariate constraint” (Gar-
ner, 1962) and “multi-information” (Studenỳ and Vejnarová, 1998). Many related
information theoretic quantities can be expressed in terms of I(X), and can thus be
estimated using estimators of I(X). Examples include pairwise mutual information
I(X,Y ) = I((X,Y )) − I(X) − I(Y ), which measures dependence between (poten-
tially multivariate) random variables X and Y , conditional mutual information

I(X|Z) = I((X,Z))−
D∑
j=1

I((Xj , Z)),

which is useful for characterizing how much dependence withinX can be explained
by a latent variable Z (Studenỳ and Vejnarová, 1998), and transfer entropy (a.k.a.
“directed information”) TX → Y , which measures predictive power of one time se-
ries X on the future of another time series Y . I(X) is also related to entropy via
Eq. (4.1), but, unlike the above quantities, this relationship depends on the marginal
distributions of X , and hence involves some additional considerations, as discussed
in Section 4.8.

We now define the class of nonparanormal distributions, from which we assume
our data are drawn.

Definition 9. (Nonparanormal distribution, a.k.a. Gaussian copula model) A ran-
dom vector X = (X1, . . . , XD)T is said to have a nonparanormal distribution (denoted
X ∼ NPN (Σ; f)) if there exist functions {fj}Dj=1 such that each fj : R → R is a dif-
feomorphism 1 and f(X) ∼ N (0,Σ), for some (strictly) positive definite Σ ∈ RD×D
with 1’s on the diagonal (i.e., each σj = Σj,j = 1). 2 Σ is called the latent covariance of
X and f is called the marginal transformation of X .

The nonparanormal family relaxes many constraints of the Gaussian family. As
illustrated in a few example in Figure 4.1, nonparanormal distributions can be multi-
modal, skewed, or heavy-tailed, can encode noisy nonlinear dependencies, and need
not be supported on all of RD. Minimal assumptions are made on the marginal
distributions; any desired continuously differentiable marginal cumulative distri-
bution function (CDF) Fi of variable Xi corresponds to marginal transformation

1A diffeomorphism is a continuously differentiable bijection g : R → R ⊆ R such that g−1 is
continuously differentiable.

2Setting E [f(X)] = 0 and each σj = 1 ensures model identifiability, but does not reduce the model
space, since these parameters can be absorbed into the marginal transformation f .
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FIGURE 4.1: Surface and contour plots of three example nonparanor-
mal densities. Figure taken from Liu, Lafferty, and Wasserman (2009).

fi(x) = Φ−1(Fi(x)) (where Φ is the standard normal CDF). As examples, for a Gaus-
sian variable Z, the 2-dimensional case, X1 ∼ N (0, 1), and X2 = T (X1 + Z) is
nonparanormal when T (x) = x3, T = tanh, T = Φ, or any other diffeomorphism.
On the other hand, the limits of the Gaussian copula appear, for example, when
T (x) = x2, which is not bijective; then, if E[Z] = 0, the Gaussian copula approxima-
tion of (X1, X2) models X1 and X2 as independent.

We are now ready to formally state our problem:
Formal Problem Statement: Given n i.i.d. samplesX1, ..., Xn ∼ NPN (Σ; f), where

Σ and f are both unknown, we would like to estimate I(X).
Other notation: D denotes the dimension of the data (i.e., Σ ∈ RD×D and f :

RD → RD). For a positive integer k, [k] = {1, ..., k} denotes the set of positive
integers less than k (inclusive). For consistency, where possible, we use i ∈ [n] to
index samples and j ∈ [D] to index dimensions (so that, e.g., Xi,j denotes the jth

dimension of the ith sample). Given a data matrixX ∈ Rn×D, our estimators depend
on the empirical rank matrix

R ∈ [n]n×D with Ri,j :=

n∑
k=1

1{Xi,j≥Xk,j}. (4.2)

For a square matrix A ∈ Rk×k, |A| denotes the determinant of A, AT denotes the
transpose of A, and

‖A‖2 := max
x ∈ Rk
‖x‖2 = 1

‖Ax‖2 and ‖A‖F :=

√ ∑
i,j∈[k]

A2
i,j

denote the spectral and Frobenius norms of A, respectively. When A is symmetric,
λ1(A) ≥ λ2(A) ≥ · · · ≥ λD(A) are its eigenvalues.
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4.3 Related Work and Our Contributions

4.3.1 The Nonparanormal

Nonparanormal models have been used for modeling dependencies among high-
dimensional data in a number of fields, such as graphical modeling of gene expres-
sion data (Liu, Han, Yuan, Lafferty, and Wasserman, 2012), of neural data (Berkes,
Wood, and Pillow, 2009), and of financial time series (Malevergne and Sornette, 2003;
Wilson and Ghahramani, 2010; Hernández-Lobato, Lloyd, and Hernández-Lobato,
2013), extreme value analysis in hydrology (Renard and Lang, 2007; Aghakouchak,
2014), and informative data compression (Rey and Roth, 2012). Besides being more
robust generalizations of Gaussians, nonparanormal distributions are also theoreti-
cally motivated in certain contexts. For example, the output Z of a neuron is often
modeled by feeding a weighted linear combination Y =

∑N
k=1wkXk of inputs into

a nonlinear transformation Z = f(Y ). When the components of X are indepen-
dent, the central limit theorem suggests Y is approximately normally distributed,
and hence Z is approximately nonparanormally distributed (Szabó, Póczos, Szirtes,
and Lőrincz, 2007). It is also useful to note that the nonparanormal assumption can
also be tested statistically in practice (Malevergne and Sornette, 2003).

With one recent exception (Ince, Giordano, Kayser, Rousselet, Gross, and Schyns,
2017), previous information estimators for the nonparanormal case (Calsaverini and
Vicente, 2009; Ma and Sun, 2011; Elidan, 2013), rely on fully nonparametric informa-
tion estimators as subroutines, and hence suffer strongly from the curse of dimen-
sionality. Very recently, Ince, Giordano, Kayser, Rousselet, Gross, and Schyns (2017)
proposed what we believe is the first mutual information estimator tailored specifi-
cally to the nonparanormal case; their estimator is equivalent to one of the estimators
(IG, described in Section 4.4.1) we study. However, they focused on its applications
to neuroimaging data analysis, and did not study its performance theoretically or
empirically.

4.3.2 Information Estimation

Our motivation for studying the nonparanormal family comes from trying to bridge
two recent approaches to information estimation. The first has studied fully non-
parametric entropy estimation, assuming only that data are drawn from a smooth
probability density p; smoothness is typically quantified by a Hölder or Sobolev ex-
ponent s ∈ (0,∞), roughly corresponding to the continuous differentiability of s. In
this setting, the minimax optimal MSE rate has been shown by Birgé and Massart
(1995) to be O

(
max

{
n−1, n−

8s
4s+D

})
. This rate slows exponentially with the dimen-

sion D, and, while many estimators have been proposed
(Pál, Póczos, and Szepesvári, 2010; Sricharan, Raich, and Hero, 2011; Sricharan,

Wei, and Hero, 2013; Singh and Póczos, 2014b; Singh and Póczos, 2014a; Krishna-
murthy, Kandasamy, Poczos, and Wasserman, 2014; Moon and Hero, 2014b; Moon
and Hero, 2014a; Singh and Póczos, 2016b; Moon, Sricharan, and Hero III, 2017) for
this setting, their practical use is limited to a few dimensions3.

The second area is in the setting where data are assumed to be drawn from a truly
Gaussian distribution. Here the high-dimensional case is far more optimistic. While

3“Few” depends on s and n, but Kandasamy, Krishnamurthy, Poczos, and Wasserman (2015)
suggest nonparametric estimators should only be used with D at most 4-6. Rey and Roth (2012)
tried using several nonparametric information estimators on the Communities and Crime UCI data set
(n = 2195, D = 10), but found all too unstable to be useful.
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this case had been studied previously (Ahmed and Gokhale, 1989; Misra, Singh, and
Demchuk, 2005; Srivastava and Gupta, 2008), Cai, Liang, and Zhou (2015) recently
provided a precise finite-sample analysis based on deriving the exact probability
law of the log-determinant log |Σ̂| of the scatter matrix Σ̂. From this, they derived
a deterministic bias correction, giving an estimator for which they prove an MSE
upper bound of −2 log

(
1− D

n

)
and a high-dimensional central limit theorem for the

case D →∞ as n→∞ (but D < n).
Cai, Liang, and Zhou (2015) also prove a minimax lower bound of 2D/n on MSE,

with several interesting consequences. First, consistent information estimation is
possible only if D/n → 0. Second, since, for small x, − log(1 − x) ≈ x, this lower
bound essentially matches the above upper bound when D/n is small. Third, they
show this lower bound holds even when restricted to diagonal covariance matrices.
Since the upper bound for the general case and the lower bound for the diagonal
case essentially match, it follows that Gaussian information estimation is not made
easier by structural assumptions such as Σ being bandable, sparse, or Toeplitz, as is
common in, for example, stationary Gaussian process models (Cai and Yuan, 2012).

This 2D/n lower bound extends to our more general nonparanormal setting.
However, we provide a minimax lower bound suggesting that the nonparanormal
setting is strictly harder, in that optimal rates depend on Σ. Our results imply non-
paranormal information estimation does become easier if Σ is assumed to be band-
able or Toeplitz.

A closely related point is that known convergence rates for the fully nonpara-
metric case require the density p to be bounded away from 0 or have particular tail
behavior, due to singularity of the logarithm near 0 and resulting sensitivity of Shan-
non information-theoretic functionals to regions of low but non-zero probability. In
contrast, Cai, Liang, and Zhou (2015) need no lower-bound-type assumptions in the
Gaussian case. In the nonparanormal case, we show some such condition is needed
to prove a uniform rate, but a weaker condition, a positive lower bound on λD(Σ),
suffices.

The main contributions of this paper are the following:
1. We propose three estimators, ÎG, Îρ, and Îτ ,4 for the mutual information of a

nonparanormal distribution.
2. We prove upper bounds, of order O(D2/(λ2

D(Σ)n)) on the mean squared error
of Îρ, providing the first upper bounds for a nonparanormal information esti-
mator. This bound suggests nonparanormal estimators scale far better with D
than nonparametric estimators.

3. We prove a minimax lower bound suggesting that, unlike the Gaussian case,
difficulty of nonparanormal information estimation depends on the true Σ.

4. We give simulations comparing our proposed estimators to Gaussian and non-
parametric estimators. Besides confirming and augmenting our theoretical
predictions, these help characterize the settings in which each nonparanormal
estimator works best.

5. We present entropy estimators based on ÎG, Îρ, and Îτ . Though nonparanor-
mal entropy estimation requires somewhat different assumptions from mutual
information estimation, we show that entropy can also be estimated at the rate
O(D2/(λ2

D(Σ)n)).

4Ince, Giordano, Kayser, Rousselet, Gross, and Schyns (2017) proposed ÎG for use in neuroimaging
data analysis. To the best of our knowledge, Îρ and Îτ are novel.
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4.4 Nonparanormal Information Estimators

In this section, we present three different estimators, IG, Iρ, and Iτ , for the mutual
information of a nonparanormal distribution. We begin with a lemma providing
common motivation for all three estimators.

Since mutual information is invariant to diffeomorphisms of individual vari-
ables, it is easy to see that the mutual information of a nonparanormal random vari-
able is the same as that of the latent Gaussian random variable. Specifically:

Lemma 10. (Nonparanormal mutual information): SupposeX ∼ NPN (Σ; f). Then,

I(X) = −1

2
log |Σ|. (4.3)

Lemma 10 shows that mutual information of a nonparanormal random variable
depends only the latent covariance Σ; the marginal transformations are nuisance
parameters, allowing us to avoid difficult nonparametric estimation; the estimators
we propose all plug different estimates of Σ into Eq. (4.3), after a regularization step
described in Section 4.4.3.

4.4.1 Estimating Σ by Gaussianization

The first estimator Σ̂G of Σ proceeds in two steps. First, the data are transformed to
have approximately standard normal marginal distributions, a process Szabó, Póc-
zos, Szirtes, and Lőrincz (2007) referred to as “Gaussianization”. By the nonparanor-
mal assumption, the Gaussianized data are approximately jointly Gaussian. Then,
the latent covariance matrix is estimated by the empirical covariance of the Gaus-
sianized data.

More specifically, letting Φ−1 denote the quantile function of the standard normal
distribution and recalling the rank matrix R defined in (4.2), the Gaussianized data

X̃i,j := Φ−1

(
Ri,j
n+ 1

)
(for i ∈ [n], j ∈ [D])

are obtained by transforming the empirical CDF of the each dimension to approxi-
mate Φ. Then, we estimate Σ by the empirical covariance Σ̂G := 1

n

∑n
i=1 X̃iX̃

T
i .

4.4.2 Estimating Σ via Rank Correlation

The second estimator actually has two variants, Iρ and Iτ , respectively based on re-
lating the latent covariance to two classic rank-based dependence measures, Spear-
man’s ρ and Kendall’s τ . For two random variables X and Y with CDFs FX , FY :
R→ [0, 1], ρ and τ are defined by

ρ(X,Y ) := Corr(FX(X), FY (Y ))

and τ(X,Y ) := Corr(sign(X −X ′), sign(Y − Y ′)),

respectively, where

Corr(X,Y ) =
E[(X − E[X])(Y − E[Y ])]√

V[X]V[Y ]
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denotes the standard Pearson correlation operator and (X ′, Y ′) is an IID copy of
(X,Y ). ρ and τ generalize to the D-dimensional setting in the form of rank correla-
tion matrices ρ, τ ∈ [−1, 1]D×D with ρj,k = ρ(Xj , Xk) and τj,k = τ(Xj , Xk) for each
j, k ∈ [D].

Iρ and Iτ are based on a classical result relating the correlation and rank-correlation
of a bivariate Gaussian:

Theorem 11. (Kruskal, 1958): Suppose (X,Y ) has a Gaussian joint distribution with
covariance Σ. Then,

Corr(X,Y ) = 2 sin
(π

6
ρ(X,Y )

)
= sin

(π
2
τ(X,Y )

)
.

ρ and τ are often preferred over Pearson correlation for their relative robustness
to outliers and applicability to non-numerical ordinal data. While these are strengths
here as well, the main reason for their relevance is that they are invariant to marginal
transformations (i.e., for diffeomorphisms f, g : R → R, ρ(f(X), g(Y )) = ±ρ(X,Y )
and τ(f(X), g(Y )) = ±τ(X,Y )). As a consequence, the identity provided in The-
orem 11 extends unchanged to the case (X,Y ) ∼ NPN (Σ; f). This suggests an
estimate for Σ based on estimating ρ or τ and plugging this element-wise into the
transform x 7→ 2 sin

(
π
6x
)

or x 7→ sin
(
π
2x
)
, respectively. Specifically, Σρ is defined by

Σ̂ρ := 2 sin
(π

6
ρ̂
)
, where ρ̂ = Ĉorr(R)

is the empirical correlation of the rank matrix R, and sine is applied element-wise.
Similarly, Σ̂τ := sin

(
π
2 τ̂
)
, where

τ̂j,k :=
1(
n
2

) ∑
i 6=`∈[n]

sign(Xi,j −X`,j) sign(Xi,k −X`,k).

4.4.3 Regularization and estimating I

Unfortunately, unlike usual empirical correlation matrices, none of Σ̂G, Σ̂ρ, or Σ̂τ is
almost surely strictly positive definite. As a result, directly plugging into the mutual
information functional (4.3) may give∞ or be undefined.

To correct for this, we propose a regularization step, in which we project each
estimated latent covariance matrix onto the (closed) cone S(z) of symmetric matrices
with minimum eigenvalue z > 0. Specifically, for any z > 0, let

S(z) :=
{
A ∈ RD×D : A = AT , λD(A) ≥ z

}
.

For any symmetric matrix A ∈ RD×D with eigendecomposition Σ̂ = QΛQ−1 (i.e.,
QQT = QTQ = ID and Λ is diagonal), the projection Az of A onto S(z) is defined
as Az := QΛzQ

−1, where Λz is the diagonal matrix with jth nonzero entry (Λz)j,j =
max{z,Λj,j}. We call this a “projection” because Az = argminB∈S(z)‖A − B‖F (see,
e.g., Henrion and Malick (2012)).

Applying this regularization to Σ̂G, Σ̂ρ, or Σ̂τ gives a strictly positive definite
estimate Σ̂G,z , Σ̂ρ,z , or Σ̂τ,z , respectively, of Σ. We can then estimate I by plugging
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this into Equation (4.3), giving our three estimators:

ÎG,z := −1

2
log
∣∣∣Σ̂G,z

∣∣∣ , Îρ,z := −1

2
log
∣∣∣Σ̂ρ,z

∣∣∣
and Îτ,z := −1

2
log
∣∣∣Σ̂τ,z

∣∣∣ .
4.5 Upper Bounds on the Error of Îρ,z

Here, we provide finite-sample upper bounds on the error of the estimator Îρ based
on Spearman’s ρ. Proofs are given in the Appendix.

We first bound the bias of Îρ:

Proposition 12. Suppose X1, ..., Xn
i.i.d.∼ NPN (Σ; f). Then, there exists a constant C >

0 such that, for any z > 0, the bias of Îρ,z is at most∣∣∣E [Îρ,z]− I∣∣∣ ≤ C ( D

z
√
n

+ log
|Σz|
|Σ|

)
,

where Σz is the projection of Σ onto S(z).

The first term of the bias stems from nonlinearity of the log-determinant function
in Equation 4.3, which we analyze via Taylor expansion. The second term,

log
|Σz|
|Σ|

=
∑

λj(Σ)<z

log

(
z

λj(Σ)

)
,

is due to the regularization step and is actually exact, but is difficult to simplify
or bound without more assumptions on the spectrum of Σ and choice of z, which
we discuss later. We now turn to bounding the variance of Îρ,z . We first provide
an exponential concentration inequality for Îρ,z around its expectation, based on
McDiarmid’s inequality:

Proposition 13. Suppose X1, ..., Xn
i.i.d.∼ NPN (Σ; f). Then, for any z, ε > 0,

P
[∣∣∣Îρ,z − E

[
Îρ,z

]∣∣∣ > ε
]
≤ 2 exp

(
− nz2ε2

18π2D2

)
.

Such exponential concentration bounds are useful when one wants to simulta-
neously bound the error of multiple uses of an estimator, and hence we present
it separately as it may be independently useful. However, for the purpose of un-
derstanding convergence rates, we are more interested in the variance bound that
follows as an easy corollary:

Corollary 14. Suppose X1, ..., Xn
i.i.d.∼ NPN (Σ; f). Then, for any z > 0, the variance of

Îρ,z is at most

V
[
Îρ,z

]
≤ 36π2D2

z2n
.

Given these bias and variance bounds, a bound on the MSE of Îρ,z follows via
the usual bias-variance decomposition:
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Theorem 15. Suppose X ∼ NPN (Σ; f). Then, there exists a constant C such that

E
[(
Îρ,z − I

)2
]
≤ C

(
D2

z2n
+ log2 |Σz|

|Σ|

)
. (4.4)

A natural question is now how to optimally select the regularization parameter
z. While the bound (4.4) is clearly convex in z, it depends crucially on the unknown
spectrum of Σ, and, in particular, on the smallest eigenvalues of Σ. As a result, it
is difficult to choose z optimally in general, but we can do so for certain common
subclasses of covariance matrices. For example, if Σ is Toeplitz or bandable (i.e., for
some c ∈ (0, 1), all |Σi,j | ≤ c|i−j|), then the smallest eigenvalue of Σ can be bounded
below (Cai and Yuan, 2012). When Σ is bandable, as we show in the Appendix, this
bound can be independent of D. In these cases, the following somewhat simpler
MSE bound can be used:

Corollary 16. Suppose X ∼ NPN (Σ; f), and suppose z ≤ λD(Σ). Then, there exists a
constant C > 0 such that

E
[(
Îρ,z − I

)2
]
≤ CD2

z2n
.

4.6 Lower Bounds in terms of Σ

If X1, ..., Xn
i.i.d∼ N (0,Σ) are Gaussian, for the plug-in estimator

Î = −1
2 log

∣∣∣Σ̂∣∣∣ (where Σ̂ = 1
n

∑n
i=1XiX

T
i

is the empirical covariance matrix), Cai, Liang, and Zhou (2015) showed that the
distribution of Î − I is independent of the true correlation matrix Σ. This follows
from the “stability” of Gaussians (i.e., that nonsingular linear transformations of
Gaussian random variables are Gaussian). In particular,

Î − I = log |Σ̂| − log |Σ| = log |Σ−1/2Σ̂Σ−1/2|,

and Σ−1/2Σ̂Σ−1/2 has the same distribution as log Σ̂ does in the special case that
Σ = ID is the identity. This property is both somewhat surprising, given that I →∞
as |Σ| → 0, and useful, leading to a tight analysis of the error of Î and confidence
intervals that do not depend on Σ.

It would be convenient if any nonparanormal information estimators satisfied
this property. Unfortunately, the main result of this section is a negative one, show-
ing that this property is unlikely to hold without additional assumptions:

Proposition 17. Consider the 2-dimensional case

X1, ..., Xn
i.i.d∼ N (0,Σ), with Σ =

[
1 σ
σ 1

]
, (4.5)

and let σ∗ ∈ (0, 1). Suppose an estimator Î = Î(R) of Iσ = −1
2 log(1− σ2) is a function of

the empirical rank matrix R ∈ Nn×2 of X . Then, there exists a constant C > 0, depending
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only n, such that the worst-case MSE of Î over σ ∈ (0, σ∗) satisfies

sup
σ∈(0,σ∗)

E
[(
Î(R)− Iσ

)2
]
≥ 1

64

(
C − log(1− σ2

∗)
)2

Clearly, this lower bound tends to ∞ as σ → 1. As written, this result lower
bounds the error of rank-based estimators in the Gaussian case when σ ≈ 1. However,
to the best of our knowledge, all methods for estimating Σ in the nonparanormal
case are functions of R, and prior work (Hoff, 2007) has shown that the rank matrix
R is a generalized sufficient statistic for Σ (and hence for I) in the nonparanormal
model. Thus, it is reasonable to think of lower bounds for rank-based estimators in
the Gaussian case as lower bounds for any estimator in the nonparanormal case.

The proof of this result is based on the simple observation that the rank matrix
can take only finitely many values. Hence, as σ → 1, R tends to be perfectly corre-
lated, providing little information about σ, whereas the dependence of the estimand
Iσ on σ increases sharply. This is intuition is formalized in the Appendix using Le
Cam’s lemma for lower bounds in two-point parameter estimation problems.

4.7 Empirical Results

We compare 5 mutual information estimators:
• Î : Gaussian plug-in estimator with bias-correction (see Cai, Liang, and Zhou

(2015)).

• ÎG: Nonparanormal estimator using Gaussianization.

• Îρ: Nonparanormal estimator using Spearman’s ρ.

• Îτ : Nonparanormal estimator using Kendall’s τ .

• ÎkNN: Nonparametric estimator using k-nearest neighbor (kNN) statistics.
For Iρ and Iτ , we used a regularization constant z = 10−3. We did not regularize

for IG. Although this implies P[IG = ∞] > 0, this is extremely unlikely for
even moderate values of n and never occurred during our experiments, which all
use n ≥ 32. We thus omit denoting dependence on z. For IkNN, except as noted in
Experiment 3, k = 2, based on recent analysis (Singh and Póczos, 2016a) suggesting
that small values of k are best for estimation.

Sufficient details to reproduce experiments are given in the Appendix, and MAT-
LAB source code is available on GitHub5. We report MSE based on 1000 i.i.d. trials of
each condition. 95% confidence intervals were consistently smaller than plot mark-
ers and hence omitted to avoid cluttering plots. Except as specified otherwise, each
experiment had the following basic structure: In each trial, a correlation matrix Σ
was drawn by normalizing a random covariance matrix from a Wishart distribu-

tion, and data X1, ..., Xn
i.i.d.∼ N (0,Σ) drawn. All 5 estimators were computed from

X1, ..., Xn and squared error from true mutual information (computed from Σ) was
recorded. Unless specified otherwise, n = 100 and D = 25.

Since our nonparanormal information estimators are functions of ranks of the
data, neither the true mutual information nor our non-paranormal estimators de-
pend on the marginal transformations. Thus, except in Experiment 2, where we

5https://github.com/sss1/nonparanormal-information

https://github.com/sss1/nonparanormal-information
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FIGURE 4.2: Plots of log10(MSE) plotted over (a) log-sample-size
log10(n), (b) fraction α of dimensions with non-Gaussian marginals,
(c) fraction β of outlier samples in each dimension, and (d) covariance

Σ1,2 = Cov(X1, X2). Note that the x-axis in (d) is decreasing.

show the effects of transforming marginals, and Experiment 3, where we add out-
liers to the data, we perform all experiments on truly Gaussian data, with the under-
standing that this setting favors the Gaussian estimator.

All experimental results are displayed in Figure 4.2.
Experiment 1 (Dependence on n): We first show nonparanormal estimators

have “parametric” O(n−1) dependence on n, unlike ÎkNN, which converges far more
slowly. For large n, MSEs of ÎG, Îρ, and Îτ are close to that of Î .

Experiment 2 (Non-Gaussian Marginals): Next, we show nonparanormal es-
timators are robust to non-Gaussianity of the marginals, unlike Î . We applied a
nonlinear transformation f to a fraction α ∈ [0, 1] of dimensions of Gaussian data.
That is, we drew Z1, ..., Zn

i.i.d.∼ N (0,Σ) and then used data X1, ..., Xn, where

Xi,j =

{
T (Zi,j) if j < αD
Zi,j if j ≥ αD , ∀i ∈ [n], j ∈ [D],

for a diffeomorphism T . Here, we use T (z) = ez . The Appendix shows similar
results for several other T . Î performs poorly even when α is quite small. Poor
performance of ÎkNN may be due to discontinuity of the density at x = 0.

Experiment 3 (Outliers): We now show that nonparanormal estimators are far
more robust to the presence of outliers than Î or ÎkNN. To do this, we added outliers
to the data according to the method of Liu, Han, Yuan, Lafferty, and Wasserman
(2012). After drawing Gaussian data, we independently select bβnc samples in each
dimension, and replace each i.i.d. uniformly at random from {−5,+5}. Performance
of Î degrades rapidly even for small β. ÎkNN can fail for atomic distributions, ÎkNN =
∞ whenever at least k samples are identical. This mitigate this, we increased k to
20 and ignored trials where ÎkNN = ∞, but ÎkNN ceased to give any finite estimates
when β was sufficiently large.

For small values of β, nonparanormal estimators surprisingly improve. We hy-
pothesize this is due to convexity of the mutual information functional Eq. (4.3) in
Σ. By Jensen’s inequality, estimators which plug-in an approximately unbiased es-
timate Σ̂ of Σ are biased towards overestimating I . Adding random (uncorrelated)
noise reduces estimated dependence, moving the estimate closer to the true value. If
this nonlinearity is indeed a major source of bias, it may be possible to derive a von
Mises-type bias correction (see Kandasamy, Krishnamurthy, Poczos, and Wasser-
man (2015)) accounting for higher-order terms in the Taylor expansion of the log-
determinant.
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Experiment 4 (Dependence on Σ): Here, we verify our results in Section 4.6
showing that MSE of rank-based estimators approaches ∞ as |Σ| → 0, while MSE
of Î is independent of Σ. Here, we set D = 2 and Σ as in Eq. (4.5), varying σ ∈
[0, 1]. Indeed, the MSE of Î does not change, while the MSEs of ÎG, Îρ, and Îτ all
increase as σ → 1. This increase seems mild in practice, with performance worse
than of Î only when σ > 0.99. Îτ appears to perform far better than ÎG and Îρ
in this regime. Performance of IkNN degrades far more quickly as σ → 1. This
phenomenon is explored by Gao, Ver Steeg, and Galstyan (2015), who lower bound
error of IkNN in the presence of strong dependencies, and proposed a correction to
improve performance in this case.

It is also interesting that errors of Îρ and Îτ drop as σ → 0. This is likely because,
for small σ, the main source of error is the variance of ρ̂ and τ̂ (as − log(1 − σ2) ≈
σ2 when σ ≈ 0). When n → ∞ and D is fixed, both 2 sin(πρ̂/6) and sin(πτ̂/2)
are asymptotically normal estimates of σ, with asymptotic variances proportional to
(1−σ2)2 (Klaassen and Wellner, 1997). By the delta method, since dI

dσ = σ
1−σ2 , Îρ and

Îτ are asymptotically normal estimates of I , with asymptotic variances proportional
to σ2 and hence vanishing as σ → 0.

4.8 Estimating Entropy

Thus far, we have discussed estimation of mutual information I(X). Mutual in-
formation is convenient because it is invariant under marginal transformation, and
hence I(X) = I(f(X)) depends only on Σ. While the entropy H(X) does depend
on the marginal transform f , fortunately, by Eq. (4.1), H(X) differs from I(X) only
by a sum of univariate entropies. Univariate nonparametric estimation of entropy
in has been studied extensively, and there exist several estimators (e.g., based on
sample spacings (Beirlant, Dudewicz, Györfi, and Meulen, 1997), kernel density es-
timates (Moon, Sricharan, Greenewald, and Hero, 2016) or k-nearest neighbor meth-
ods (Singh and Póczos, 2016a)) that can estimate H(Xj) at the rate � n−1 in MSE
under relatively mild conditions on the marginal density pj . While the precise as-
sumptions vary with the choice of estimator, they are mainly (a) that pj be lower
bounded on its support or have particular (e.g., exponential) tail behavior, and (b)
that pj be smooth, typically quantified by a Hölder or Sobolev condition. Details of
these assumptions are in the Appendix.

Under these conditions, since there exist estimators Ĥ1, ..., ĤD and a constant
C > 0 such that

E[(Ĥj −H(Xj))
2] ≤ C/n, ∀j ∈ [D]. (4.6)

Combining these estimators with an estimator, say Îρ,z , of mutual information gives
an estimator of entropy:

Ĥρ,z :=
∑D

j=1 Ĥj − Îρ,z.

If we assume z = λ−1
D (Σ) is bounded below by a positive constant, combining in-

equality (4.6) with Corollary 16 gives

E
[(
Ĥρ,z −H(X)

)2
]
≤ CD2

n
,

where C differs from in (4.6) but is independent of n and D.
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mator (Gaussian, nonparanormal, fully nonparametric) estimator can
be useful. Nonparanormal estimators can help fill the large gap in
the setting of moderately high-dimensional data with non-Gaussian

marginal distributions.

4.9 Conclusions and Future Work

This paper suggests nonparanormal information estimation as a practical compro-
mise between the intractable nonparametric case and the limited Gaussian case. We
proposed three estimators for this problem and provided the first upper bounds for
nonparanormal information estimation. We also gave lower bounds showing how
dependence on Σ differs from the Gaussian case and demonstrated empirically that
nonparanormal estimators are more robust than Gaussian estimators, even in di-
mensions too high for nonparametric estimators.

Collectively, these results suggest that, by scaling to moderate or high dimen-
sionality without relying on Gaussianity, nonparanormal information estimators may
be effective tools with a number of machine learning applications. While the best
choice of information estimator inevitably depends on context, as an off-the-shelf
guide for practitioners, the estimators we suggest, in order of preference, are:
• fully nonparametric if D < 6, n > max{100, 10D}.
• Îρ if D2/n is small and data may have outliers.
• Îτ if D2/n is small and dependencies may be strong.
• ÎG otherwise.
• Î only given strong belief that data are nearly Gaussian.
Figure 4.3 shows, in a simplified phase diagram, when each kind of estimator can be
useful.

There are many natural open questions in this line of work. First, in the nonpara-
normal model, we focused on estimating mutual information I(X), which does not
depend on marginal transforms f , and entropy, which decomposes into I(X) and
1-dimensional entropies. In both cases, additional structure imposed by the non-
paranormal model allows estimation in higher dimensions than fully nonparametric
models. Can nonparanormal assumptions lead to higher dimensional estimators for
the many other useful nonlinear functionals of densities (e.g., Lp norms/distances
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and more general (e.g., Rényi or Tsallis) entropies, mutual informations, and diver-
gences) that do not decompose?

Second, there is a gap between our upper bound rate of ‖Σ−1‖22D2/n and the
only known lower bound of 2D/n (from the Gaussian case), though we also showed
that bounds for rank-based estimators depend on Σ. Is quadratic dependence on D
optimal? How much do rates improve under structural assumptions on Σ? Upper
bounds should be derived for other estimators, such as ÎG and Îτ . The 2D/n lower
bound proof of Cai, Liang, and Zhou (2015) for the Gaussian case, based on the
Cramer-Rao inequality (Bos, 2007), is unlikely to tighten in the nonparanormal case,
since Fisher information is invariant to diffeomorphisms of the data. Hence, a new
approach is needed if the lower bound in the nonparanormal case is to be raised.

Finally, our work applies to estimating the log-determinant log |Σ| of the latent
correlation in a nonparanormal model. Besides information estimation, the work of
Cai, Liang, and Zhou (2015) on estimating log |Σ| in the Gaussian model was moti-
vated by the role of log |Σ| in other multivariate statistical tools, such as quadratic
discriminant analysis (QDA) and MANOVA (Anderson, 1984). Can our estimators
lead to more robust nonparanormal versions of these tools?

4.10 Lemmas

Our proofs rely on the following lemmas.

Lemma 18. (Convexity of the inverse operator norm): The function A 7→ ‖A−1‖2 is
convex over A � 0.

Proof: For A,B � 0, let C := τA+ (1− τ)B. Then,

‖Ĉ−1‖2 =
1

infx∈RD x
TCx

=
1

infx∈RD τx
TAx+ (1− τ)xTBx

≤ 1

τ infx∈RD x
TAx+ (1− τ) infx∈RD x

TBx

≤ τ 1

infx∈RD x
TAx

+ (1− τ)
1

infx∈RD x
TBx

= τ
∥∥A−1

∥∥
2

+ (1− τ)
∥∥B−1

∥∥
2

via convexity of the function x 7→ 1/x on (0,∞).

Lemma 19. (Mean-Value Bound on the Log-Determinant): Matrix derivative of log-
determinant. Suppose A,B � 0. Then, for λ := min{λD(A), λD(B)},

|log |A| − log |B|| ≤ 1

λ
‖A−B‖F .

Proof: Proof: First recall that the log-determinant is continuously differentiable
over the strict positive definite cone, with ∇X log |X| = X−1 for any X � 0. Hence,
by the matrix-valued version of the mean value theorem,

log |A| − log |B| = tr(C−1(A−B)),
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where C = τA+(1−τ)B for some τ ∈ (0, 1). Since for positive definite matrices, the
inner product can be bounded by the product of the operator and Frobenius norms,
and clearly C � 0, we have

|log |A| − log |B|| = ‖C−1‖2‖A−B‖F .

Finally, it follows by Lemma 18 that

|log |A| − log |B|| ≤ 1

λ
‖A−B‖F .

4.11 Proofs of Main Results

Here, we give proofs of our main theoretical results, beginning with upper bounds
on the MSE of Îρ and proceeding to minimax lower bounds in terms of Σ.

4.12 Upper bounds on the MSE of Îρ

Proposition 20.

∣∣∣E [log |Σ̂z|
]
− log |Σ|

∣∣∣ ≤ C
‖Σ‖22 D

z2n
+

 ∑
λj(Σ)<z

log

(
z

λj(Σ)

)2 .

Proof: By the triangle inequality,∣∣∣E [log |Σ̂z|
]
− log |Σ|

∣∣∣ ≤ ∣∣∣E [log |Σ̂z|
]
− log |Σz|

∣∣∣
+ |log |Σz| − log |Σ||

For the first term, applying the matrix mean value theorem (Lemma 19) and the
inequality ‖A‖F ≤

√
D‖A‖2∣∣∣E [log
∣∣∣Σ̂z

∣∣∣]− log |Σz|
∣∣∣ ≤ E

[∣∣∣log
∣∣∣Σ̂z

∣∣∣− log |Σz|
∣∣∣]

≤ 1

z
E
[∥∥∥Σ̂z − Σz

∥∥∥
F

]
≤
√
D

z
E
[∥∥∥Σ̂z − Σz

∥∥∥
2

]
≤ CMZ‖Σ‖2D

z
√
n

,

where we used Theorem 1 of Mitra and Zhang (2014), which gives a constant CMZ

such that

E
[∥∥∥Σ̂z − Σz

∥∥∥
2

]
≤ CMZ‖Σ‖2

√
D

n
.

Via the bound ‖Σ‖2 ≤
√
D‖Σ‖∞, this reduces to

E
[∥∥∥Σ̂z − Σz

∥∥∥
2

]
≤ CMZ

D√
n
.
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Proposition 21. The variance of the nonparanormal information estimator Îρ based on
Spearman’s ρ with regularization parameter z can be bounded as

V
[
Îρ,z

]
≤ 36π2D2

z2n
.

Proof: By the Efron-Stein inequality (Efron and Stein, 1981), since X1, . . . , Xn are
independent and identically distributed,

V
[
Î
]
≤ 1

2

n∑
i=1

E
[(

log |Σ̂z| − log |Σ̂(i)
z |
)2
]

=
n

2
E
[(

log |Σ̂z| − log |Σ̂(1)
z |
)2
]
,

where Σ̂
(1)
z is our estimator after independently re-sampling the first sample X1.

Applying the multivariate mean-value theorem (Lemma 19), we have∣∣∣log |Σ̂z| − log |Σ̂(1)
z |
∣∣∣ ≤ 1

z
‖Σ̂z − Σ̂(1)

z ‖F .

‖Σ̂−1
τ ‖2 ≤ 1

z . Since S(z) is convex and the Frobenius norm is supported by an in-
ner product, the operation of projecting onto S(z) is a contraction. In particular,∥∥∥(Σ̂z − Σ̂

(1)
z

)∥∥∥
F
≤
∥∥∥(Σ̂− Σ̂(1)

)∥∥∥
F

Applying the mean value theorem to the func-

tion x 7→ 2 sin
(
π
6x
)
,

∥∥∥(Σ̂− Σ̂(1)
)∥∥∥2

F
=

D∑
j,k=1

(
Σ̂− Σ̂(1)

)2

j,k
(4.7)

≤ π2

9

D∑
j,k=1

(
ρ̂j,k − ρ̂

(1)
j,k

)2
(4.8)

=
π2

9

∥∥∥ρ̂− ρ̂(1)
∥∥∥2

F
. (4.9)

From the formula

ρ̂j,k = 1−
6
∑n

i=1 d
2
i,j,k

n(n2 − 1)
,

(where di,j,k denotes the difference in ranks of Xi,j and Xi,k in X1,j , ..., Xn,j and
X1,k, ..., Yn,k, respectively), one can see, since |d1,j,k − d′1,j,k| ≤ n and, for i 6= 1,
|di,j,k − d′i,j,k| ≤ 1, that ∣∣∣ρ̂j,k − ρ̂(1)

j,k

∣∣∣ ≤ 18

n
,

and hence that
‖ρ̂− ρ̂(1)‖F ≤

18D

n
. (4.10)

It follows from inequality (4.9) that

‖Σ̂z − Σ̂(1)
z ‖F ≤

6πD

n
.
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Altogether, this gives ∣∣∣log |Σ̂z| − log |Σ̂(1)
z |
∣∣∣ ≤ 6πD

zn
.

Then, McDiarmid’s Inequality gives, for all ε > 0,

P
[∣∣∣Î − E

[
Î
]∣∣∣ > ε

]
= 2 exp

(
− nz2ε2

18π2D2

)
.

This translates to a variance bound of

V
[
Î
]
≤ 36π2D2

z2n
.

4.12.1 Lower bound for rank-based estimators in terms of Σ

One (perhaps surprising) result of Cai, Liang, and Zhou (2015) is that, as long as
D/n → 0, the convergence rate of the estimator is independent of the true correla-
tion structure Σ. Here, we show that this desirable property does not hold in the
nonparanormal case.

Proposition 22. Consider the 2-dimensional case

X1, ..., Xn
i.i.d∼ N (0,Σ), with Σ =

[
1 σ
σ 1

]
, (4.11)

and let σ∗ ∈ (0, 1). Suppose an estimator Î = Î(R) of Iσ = −1
2 log(1− σ2) is a function of

the empirical rank matrix R ∈ Nn×2 of X (as defined in (4.2)). Then, there exists a constant
C > 0, depending only n, such that the worst-case MSE of Î over σ ∈ (0, σ∗) satisfies

sup
σ∈(0,σ∗]

E
[(
Î(R)− Iσ

)2
]
≥ 1

64

(
C − log(1− σ2

∗)
)2

→∞ as σ∗ → 1.

Proof: Note that the rank matrix R can take only finitely many values. Let R be
the set of all (n!)D possible rank matrices and let R1 ⊆ R be the set of n! rank ma-
trices that are perfectly correlated. Then, as σ → 1, P[R ∈ R1] → 1, so, in particular,
we can pick σ0 (depending only on n) such that, for all σ ≥ σ0, P[R ∈ R1] ≥ 1

2 . Since
the data are i.i.d., all rank matrices inR1 have equal probability. It follows that

DTV (P0||P1) =
1

2
‖P0 − P1‖1 ≤

1

2
,

where DTV denotes total variation distance. Finally, by Le Cam’s Lemma (see, e.g.,
Section 2.3 of Tsybakov (2008)),

inf
Î

sup
σ∈{σ0,σ1}

E
[(
Î − Iσ

)2
]
≥ (Iσ∗ − Iσ0)2

8
(1−DTV (Pσ0 , Pσ1))

≥ (log(1− σ2
0)− log(1− σ2

∗))
2

64



4.13. Details of Experimental Methods 59

4.13 Details of Experimental Methods

Here, we present details needed to reproduce our numerical simulations. Note that
MATLAB source code for these experiments is available on GitHub6, including a
single runnable script that performs all experiments and generates all figures pre-
sented in this paper. Specific details needed to reproduce experiments are given in
the Appendix,

In short, experiments report empirical mean squared errors based on 100 i.i.d.
trials of each condition. We initially computed 95% confidence intervals, but these
intervals were consistently smaller than marker sizes, so we omitted them to avoid
cluttering plots. Except as specified otherwise, each experiment followed the same
basic structure, as follows: In each trial, a random correlation matrix Σ ∈ [−1, 1]D×D

was drawn by normalizing a covariance matrix from a Wishart distributionW (ID, D)
with identity scale matrix and D degrees of freedom. Data X1, ..., Xn were then
drawn i.i.d. from N (0,Σ). All estimators were applied to the same data. Unless
specified otherwise, n = 100 and D = 25.

4.13.1 Computational Considerations

In general, the running time of all the nonparanormal estimators considered isO(Dn log n+
D2n+D3) (i.e., O(Dn log n) to rank or Gaussianize the variables in each dimension,
D2n to compute the covariance matrix, and O(D3) to compute the log-determinant).
All log-determinants log |Σ|were computed by summing the logarithms of the diag-
onal of the Cholesky decomposition of Σ, as this is widely considered to be a fast and
numerically stable approach. Note however that faster (O(D)-time) randomized al-
gorithms (Han, Malioutov, and Shin, 2015) have been proposed to approximate the
log-determinant).

4.14 Additional Experimental Results

Here, we present variants on the experiments presented in the main paper, which
support but are not necessary for illustrating our conclusions.

4.14.1 Effects of Other Marginal Transformations

In Section 4.7, we showed that the Gaussian estimator Î is highly sensitive to failure
of the Gaussian assumption for even a small fraction of marginals. Figure 4.2(b),
illustrates this for the transformation x 7→ exp(x), but we show here that this is not
specific to the exponential transformation. As shown in Figures 4.4 nearly identical
results hold when the marginal transformation f is the hyperbolic tangent function
x 7→ tanh(x), the cubic function x 7→ x3, sigmoid function x 7→ 1

1+e−x , or standard
normal CDF.

6https://github.com/sss1/nonparanormal-information

https://github.com/sss1/nonparanormal-information
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FIGURE 4.4: Semi-log plot of mean squared error of various estima-
tors over the fraction of non-Gaussian marginals α ∈ [0, 1], for various

marginal transforms T .

4.15 Specific Assumptions for Estimating H(X)

As shown in the main paper, to estimate the entropy of a nonparanormal distribu-
tion at the rate O(D2/n), it suffices to the univariate entropy of each variable Xj at
the rate O(1/n). To do this, additional assumptions are required on the marginal
densities pj . Here, we give detailed sufficient conditions for this.

Letting Sj ⊆ R denote the support of pj , the two key assumptions can be roughly
classified as follows:

(a) 1
2 -order smoothness7; e.g., a Hölder condition:

sup
x 6=y∈Sj

|pj(x)− pj(y)|
|x− y|1/2

< L,

or a (slightly weaker) Sobolev condition:∫
Sj

p2
j (x) dx <∞ and

∫
Sj

(
|ξ|1/2|F [pj ] (ξ)|

)2
dξ < L,

(where F [pj ] (ξ) denotes the Fourier transform of pj evaluated at ξ) for some
constant L > 0.

(b) absolute bounds pj(x) ∈ [κ1, κ2] for all x ∈ Sj or (aj , bj)-exponential tail bounds

f(x)

exp(−ajxbj )
∈ [κ1, κ2] for all x ∈ Sj

for some κ1, κ2 ∈ (0,∞).

Under these assumptions, there are a variety of nonparametric univariate en-
tropy estimators that have been shown to converge at the rate O(1/n) (Beirlant,
Dudewicz, Györfi, and Meulen, 1997; Kandasamy, Krishnamurthy, Poczos, and Wasser-
man, 2015; Singh and Póczos, 2016a; Moon, Sricharan, Greenewald, and Hero, 2016).

4.16 Lower bounding the eigenvalues of a bandable matrix

Recall that, for c ∈ (0, 1), a matrix Σ ∈ RD×D is called c-bandable if there exists a
constant c ∈ (0, 1) such that, for all i, j ∈ D, |Σi,j | ≤ c|i−j|.

7This is stronger than the 1
4

-order smoothness mandated by the minimax rate for entropy estima-
tion (Birgé and Massart, 1995), but appears necessary for most practical entropy estimators. See Section
4 of Kandasamy, Krishnamurthy, Poczos, and Wasserman (2015) for further details.
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Here, we show simple bounds on the eigenvalues of a bandable correlation ma-
trix Σ. While this result is fairly straightforward, a brief search the literature turned
up no comparable results. Bickel and Levina (2008), who originally introduced the
class of bandable covariance matrices, separately assumed the existence of lower
and upper bounds on the eigenvalues to prove their results. In the context of in-
formation estimation, this results of particular interest because, when c < 1/3 it
implies a dimension-free positive lower bound on the minimum eigenvalue of Σ,
hence complementing our upper bound in Theorem 15.

Proposition 23. Suppose a symmetric matrix Σ ∈ RD×D is c-bandable and has identical
diagonal entries Σj,j = 1. Then, the eigenvalues λ1(Σ), ..., λD(Σ) of Σ can be bounded as

1− 3c

1− c
≤ λ1(Σ), ..., λD(Σ) ≤ 1 + c

1− c
.

In particular, when c < 1/3, we have

0 <
1− 3c

1− c
≤ λD(Σ).

Proof: The proof is based on the Gershgorin circle theorem (Gershgorin, 1931;
Varga, 2009). In the case of a real symmetric matrix Σ, this states that the eigenvalues
of Σ lie within a union of intervals

{λ1(Σ), ..., λD(Σ)} ⊆
D⋃
j=1

[Σj,j −Rj ,Σj,j +Rj ] , (4.12)

whereRj :=
∑

k 6=j |Σj,k| is the sum of the absolute values of the non-diagonal entries
of the jth row of Σ. In our case, since the diagonal entries of Σ are all Σj,j = 1, we
simply have to bound

max
j∈[D]

Rj ≤
∑
k 6=j

c|k−j|.

This geometric sum is maximized when j = dD/2e, giving

Rj ≤ 2

bD/2c∑
δ=1

cδ = 2c
1− cbD/2c

1− c
≤ 2c

1− c
.

Finally, the inclusion (4.12) gives

λD(Σ) ≥ 1− 2c

1− c
=

1− 3c

1− c
> 0

when c < 1/3. 1 + 2c
1−c = 1+c

1−c .
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Chapter 5

Fourier-weighted Quadratic
Functionals

5.1 Introduction

Let X be a compact subset of RD endowed with the Borel σ-algebra and let P denote
the family of all Borel probability measures on X . For each P ∈ P , let φP : RD → C
denote the characteristic function of P given by

φP (z) = E
X∼P

[
ψz(X)

]
for all z ∈ RD, where ψz(x) = exp (i〈z, x〉) (5.1)

denotes the ith Fourier basis element, in which 〈·, ·〉 denotes the Euclidean inner
product on RD.

For any family a = {az}z∈Z ⊆ R of real-valued coefficients indexed by a count-
able set Z , define a set of probability measures

Ha :=

{
P ∈ P :

∑
z∈Z

|φP (z)|2

a2
z

<∞

}
.

Now fix two unknown probability measures P,Q ∈ Ha. We study estimation of the
semi-inner product1

〈P,Q〉a =
∑
z∈Z

φP (z)φQ(z)

a2
z

, (5.2)

as well as the squared seminorm ‖P‖2a := 〈P, P 〉a and squared pseudometric ‖P −
Q‖2a, using n i.i.d. samples X1, ..., Xn

i.i.d.∼ P and Y1, ..., Yn
i.i.d.∼ Q from each distri-

bution. Specifically, we assume that P and Q lie in a smaller subspace Hb ⊆ Ha
parameterized by a Z-indexed real family b = {bz}z∈Z . In this setting, we study
the minimax L2 error M(a, b) of estimating 〈P,Q〉a, over P and Q lying in a (unit)
ellipsoid with respect to ‖ · ‖b; that is, the quantity

M(a, b) := inf
Ŝ

sup
‖P‖b,‖Q‖b≤1

E
X1,...,Xn∼P
Y1,...,Yn∼Q

[∣∣∣Ŝ(X1, ..., Xn, Y1, ..., Yn)− 〈P,Q〉a
∣∣∣2] ,

(5.3)
where the infimum is taken over all estimators Ŝ (i.e., all complex-valued functions
Ŝ : X 2n → C of the data).

1For a complex number ξ = a + bi ∈ C, ξ = a − bi ∈ C denotes the complex conjugate of ξ.
A semi-inner product has all properties of an inner product, except that 〈P, P 〉 = 0 does not imply
P = 0.
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We study how the rate of the minimax errorM(a, b) is primarily governed by the
rates at which az and bz decay to 0 as ‖z‖ → ∞.2 This has been studied extensively
in the Sobolev (or polynomial-decay) case, where, for some t > s ≥ 0, az = ‖z‖−s
and bz = ‖z‖−t, corresponding to estimation of s-order Sobolev semi-inner products
under t-order Sobolev smoothness assumptions on the Lebesgue density functions p
and q of P andQ (as described in Example 3 below) (Bickel and Ritov, 1988; Donoho
and Nussbaum, 1990; Laurent and Massart, 2000; Singh, Du, and Póczos, 2016). In
this case, the rate of M(a, b) has been identified (by Bickel and Ritov (1988), Donoho
and Nussbaum (1990), and Singh, Du, and Póczos (2016), in increasing generality)
as 3

M(a, b) � max

{
n−1, n−

8(t−s)
4t+D

}
, (5.4)

so that the “parametric” rate n−1 dominates when t ≥ 2s+D/4, and the slower rate

n−
8(t−s)
4t+D dominates otherwise. Laurent and Massart (2000) additionally showed that,

for t < 2s+D/4, M(a, b) increases by a factor of (log n)
4(t−s)
4t+D in the “adaptive” case,

when the tail index t is not assumed to be known to the estimator.
However, the behavior ofM(a, b) for other (non-polynomial) decay rates of a and

b has not been studied, despite the fact that, as discussed in Section 5.1.1, other rates
of decay of a and b, such as Gaussian or exponential decay, correspond to inner prod-
ucts and assumptions commonly considered in nonparametric statistics. The goal of
this paper is therefore to understand the behavior of M(a, b) for general sequences a
and b.

Although our results apply more generally, to simply summarize our results,
consider the case where a and b are “radial”; i.e. az and bz are both functions of
some norm ‖z‖. Under mild assumptions, we show that the minimax convergence
rate is then a function of the quantities

Aζn =
∑
‖z‖≤ζn

a−2
z and Bζn =

∑
‖z‖≤ζn

b−2
z ,

which can be thought of as measures of the “strengths” of ‖ · ‖a and ‖ · ‖b, for a par-
ticular choice of a “smoothing” (or “truncation”) parameter ζn ∈ (0,∞). Specifically,
we show

M(a, b) � max

{(
Aζn
Bζn

)2

,
1

n

}
, where ζDn n

2 = B2
ζn . (5.5)

While (5.5) is difficult to simplify or express in a closed form in general, it is quite
simple to compute given the forms of a and b. In this sense, (5.5) might be consid-
ered as an analogue of the Le Cam equation (Yang and Barron, 1999) (which gives
a similar implicit formula for the minimax rate of nonparametric density estimation
in terms of covering numbers) for estimating inner products and related quantities.
It is easy to check that, in the Sobolev case (where az = ‖z‖−s and bz = ‖z‖−t de-
cay polynomially), (5.5) recovers the previously known rate (5.4). Moreover, our
assumptions are also satisfied by other rates of interest, such as exponential (where
az = e−s‖z‖1 and bz = e−t‖z‖1) and Gaussian (where az = e−s‖z‖

2
2 and bz = e−t‖z‖

2
2)

rates, for which we are the first to identify minimax rates. As in the Sobolev case,
the rates here exhibit the so-called “elbow” phenomenon, where the convergence
rates is “parametric” (i.e., of order � 1/n) when t is sufficiently large relative to s,

2By equivalence of finite-dimensional norms, the choice of norm here affects only constant factors.
3Here and elsewhere, � denotes equality up to constant factors.
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and slower otherwise. However, for rapidly decaying b such as in the exponential
case, the location of this elbow no longer depends directly on the dimension D; the
parametric rate is achieved as soon as t ≥ 2s.

We note that, in all of the above cases, the minimax rate (5.5) is achieved by a
simple bilinear estimator:

Ŝζn :=
∑
‖z‖≤ζn

φ̂P (z)φ̂Q(z)

a2
z

,

where

φ̂P (z) :=
1

n

n∑
i=1

ψz(Xi) and φ̂Q(z) :=
1

n

n∑
i=1

ψz(Yi)

are linear estimates of φP (z) and φQ(z), and ζn ≥ 0 is a tuning parameter.
We also show that, in many cases, a rate-optimal ζn can be chosen adaptively

(i.e., without knowledge of the spaceHb in which P and Q lie).

5.1.1 Motivating Examples

Here, we briefly present some examples of products 〈·, ·〉a and spacesHa of the form
(5.2) that are commonly encountered in statistical theory and functional analysis. In
the following examples, the base measure on X is taken to be the Lebesgue measure
µ, and “probability densities” are with respect to µ. Also, for any integrable function
f ∈ L1(X ), we use f̃z =

∫
X fψz dµ to denote the zth Fourier coefficient of f (where

ψz is the zth Fourier basis element as in (5.1)).
The simplest example is the standard L2 inner product:

Example 1. In the “unweighted” case where az = 1 for all z ∈ Z , Ha includes the
usual space L2(X ) of square-integrable probability densities on X , and, for P and Q
with square-integrable densities p, q ∈ L2(X ), we have

〈p, q〉a =

∫
X
p(x)q(x) dx.

Typically, however, we are interested in weight sequences such that az → 0 as
‖z‖ → ∞ and Ha will be strictly smaller than L2(X ) to ensure that 〈·, ·〉a is finite-
valued; this corresponds intuitively to requiring additional smoothness of functions
inH. Here are two examples widely used in statistics:

Example 2. If HK is a reproducing kernel Hilbert space (RKHS) with a symmetric,
translation-invariant kernel K(x, y) = κ(x−y) (where κ ∈ L2(X )), one can show via
Bochner’s theorem (see, e.g., Theorem 6.6 of (Wendland, 2004)) that the semi-inner
product induced by the kernel can be written in the form

〈f, g〉HK :=
∑
z∈Z

κ̃−2
z f̃z g̃z.

Hence, setting each az = 〈κ, ψz〉 = κ̃z , Ha contains any distributions P and Q on
X with densities p, q ∈ HK = {p ∈ L2 : 〈p, p〉HK < ∞}, and we have 〈P,Q〉a =
〈p, q〉HK .

Example 3. For s ∈ N,Hs is the s-order Sobolev space

Hs :=
{
f ∈ L2(X ) : f is s-times weakly differentiable with f (s) ∈ L2(X )

}
,
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endowed with the semi-inner product of the form

〈p, q〉Hs :=
〈
p(s), q(s)

〉
L2(X )

=
∑
z∈Z
|z|2sf̃z g̃z (5.6)

where the last equality follows from Parseval’s identity. Indeed, (5.6) is commonly
used to generalize 〈f, g〉Hs , for example, to non-integer values of s. Thus, setting
az = |z|−s, Ha contains any distributions P,Q ∈ P with densities p, q ∈ Hs, and,
moreover, we have 〈P,Q〉a = 〈p, q〉Hs . Note that, when s ≥ D/2, one can show
via Bochner’s theorem that Hs is in fact also an RKHS, with symmetric, translation-
invariant kernel defined as above by κ(x) =

∑
z∈Z z

−sψz .

Paper Organization

The remainder of this paper is organized as follows: In Section 5.2, we provide no-
tation needed to formally state our estimation problem, given in Section 5.3. Sec-
tion 5.4 reviews related work on estimation of functionals of probability densities,
as well as some applications of this work. Sections 5.5 and 5.6 present our main
theoretical results, with upper bounds in Sections 5.5 and minimax lower bounds in
Section 5.6; proofs of all results are given in Appendix 5.9. Section 5.7 expands upon
these general results in a number of important special cases. Finally, we conclude in
Section 5.8 with a discussion of broader consequences and avenues for future work.

5.2 Notation

We assume the sample space X ⊆ RD is a compact subset of RD, and we use µ to
denote the usual Lebesgue measure on X . We use {ψz}z∈ZD to denote the standard
orthonormal Fourier basis of L2(X ), indexed by D-tuples of integer frequencies z ∈
ZD. For any function f ∈ L2(X ) and z ∈ ZD, we use

f̃z :=

∫
X
f(x)ψz(x) dµ(x)

to denote the zth Fourier coefficient of f (i.e., the projection of f onto ψz), and for
any probability distribution P ∈ P , we use the same notation

φP (z) := E
X∼P

[
ψz(X)

]
=

∫
X
ψz(x)dP (x)

to denote the characteristic function of P .
We will occasionally use the notation ‖z‖ for indices z ∈ Z . Due to equivalence

of finite dimensional norms, the exact choice of norm affects only constant factors;
for concreteness, one may take the Euclidean norm.

For certain applications, it is convenient to consider only a subset Z ⊆ ZD of
indices of interest (for example, Sobolev seminorms are indexed only over Z = {z ∈
ZD : z1, ..., zD 6= 0}). The subset Z may be considered arbitrary but fixed in our
work.
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Given two (0,∞)-valued sequences4 a = {az}z∈Z and b = {bz}z∈Z , we are inter-
ested in products of the form

〈f, g〉a :=
∑
z∈Z

f̃z g̃z
a2
z

,

and their induced (semi)norms ‖f‖a =
√
〈f, f〉a over spaces of the form5

Ha = {f ∈ L2(X ) : ‖f‖a <∞}

(and similarly when replacing a by b). Typically, we will have az, bz → 0 and bz
az
→ 0

whenever ‖z‖ → ∞, implying the inclusionHb ⊆ Ha ⊆ L2(X ).

5.3 Formal Problem Statement

Suppose we observe n i.i.d. samplesX1, ..., Xn
i.i.d.∼ P and n i.i.d. samples Y1, ..., Yn

i.i.d.∼
Q, where P and Q are (unknown) distributions lying in the (known) space Ha. We
are interested in the problem of estimating the inner product (5.2), along with the
closely related (squared) seminorm and pseudometric given by

‖P‖2a := 〈P, P 〉a and ‖P −Q‖2a := ‖P‖2a + ‖Q‖2a − 2〈P,Q〉a. (5.7)

We assume P and Q lie in a (known) smaller space Hb ⊆ Ha, and we are specif-
ically interested in identifying, up to constant factors, the minimax mean squared
(i.e., L2) error M(a, b) of estimating 〈P,Q〉a over P and Q lying in a unit ellipsoid
with respect to ‖ · ‖b; that is, the quantity

M(a, b) := inf
Ŝ

sup
‖P‖b,‖Q‖b≤1

E
X1,...,Xn∼p,
Y1,...,Yn∼q

[∣∣∣Ŝ − 〈p, q〉a∣∣∣2] , (5.8)

where the infimum is taken over all estimators (i.e., all functions Ŝ : R2n → C of the
data X1, ..., Xn, Y1, ..., Yn).

5.4 Related Work

This section reviews previous studies on special cases of the problem we study, as
well as work on estimating related functionals of probability distributions, and a few
potential applications of this work in statistics and machine learning.

5.4.1 Prior work on special cases

While there has been substantial work on estimating unweighted L2 norms and dis-
tances of densities (Schweder, 1975; Anderson, Hall, and Titterington, 1994; Giné
and Nickl, 2008), to the best of our knowledge, most work on the more general prob-
lem of estimating weighted inner products or norms has been on estimating Sobolev
quantities (see Example 3 in Section 5.1) by Bickel and Ritov (1988), Donoho and

4A more proper mathematical term for a and b would be net.
5Specifically, we are interested in probability densities, which lie in the simplex P := {f ∈ L1(X ) :

f ≥ 0,
∫
X f dµ = 1}, so that we should write, e.g., p, q ∈ H ∩ P . Henceforth, “density” refers to any

function lying in P .
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Nussbaum (1990), and Singh, Du, and Póczos (2016). Bickel and Ritov (1988) con-
sidered the case of integer-order Sobolev norms, which have the form

‖f‖2Hs = ‖f (s)‖2L2(X ) =

∫ (
f (s)(x)

)2
dx, (5.9)

for which they upper bounded the error of an estimator based on plugging a kernel
density estimate into (5.9) and then applying an analytic bias correction. They also
derived matching minimax lower bounds for this problem.6 Singh, Du, and Póczos
(2016) proved rate-matching upper bounds on the error of a much simpler inner
product estimator (generalizing an estimator proposed by Donoho and Nussbaum
(1990)), which applies for arbitrary s ∈ R. Our upper and lower bounds are strict
generalizations of these results. Specifically, relative to this previous work on the
Sobolev case, our work makes advances in three directions:

1. We consider estimating a broader class of inner product functionals 〈p, q〉z , for
arbitrary sequences {az}z∈Z . The Sobolev case corresponds to az = ‖z‖−s for
some s > 0.

2. We consider a broader range of assumptions on the true data densities, of the
form ‖p‖b, ‖q‖b < ∞, for arbitrary sequences {bz}z∈Z . The Sobolev case corre-
sponds to bz = ‖z‖−t for some t > 0.

3. We prove lower bounds that match our upper bounds, thereby identifying
minimax rates. For many cases, such as Gaussian or exponential RKHS in-
ner products or densities, these results are the first concerning minimax rates,
and, even in the Sobolev case, our lower bounds address some previously open
cases (namely, non-integer s and t, and D > 1.

The closely related work of Fan (1991) also generalized the estimator of Donoho
and Nussbaum (1990), and proved (both upper and lower) bounds on M(a, b) for
somewhat more general sequences, and also considered norms with exponent p 6= 2
(i.e., norms not generated by an inner product, such as those underlying a broad
class of Besov spaces). However, his analysis placed several restrictions on the rates
of a and b; for example, it requires

sup
Z⊆Z

|Z| supz∈Z a
−2
z∑

z∈Z a
−2
z

<∞ and sup
Z⊆Z

|Z| supz∈Z b
−2
z∑

z∈Z b
−2
z

<∞.

This holds when a and b decay polynomially, but fails in many of the cases we con-
sider, such as exponential decay. The estimation of norms with p 6= 2 and a and b
decaying non-polynomially, therefore, remains an important unstudied case, which
we leave for future work.

Finally, we note that, except Singh, Du, and Póczos (2016), all the above works
have considered only D = 1 (i.e., when the sample space X ⊆ R), despite the fact
that D can play an important role in the convergence rates of the estimators. The
results in this paper hold for arbitrary D ≥ 1.

6Bickel and Ritov (1988) actually make Hölder assumptions on their densities (essentially, an L∞
bound on the derivatives of the density), rather than our slightly milder Sobolev assumption (essen-
tially, an L2 bound on the derivative). However, as we note in Section 5.8, these assumptions are
closely related such that the results are comparable up to constant factors.
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5.4.2 Estimation of related functionals

There has been quite a large amount of recent work (Nguyen, Wainwright, and Jor-
dan, 2010; Liu, Wasserman, and Lafferty, 2012; Moon and Hero, 2014b; Singh and
Póczos, 2014b; Singh and Póczos, 2014a; Krishnamurthy, Kandasamy, Poczos, and
Wasserman, 2014; Moon and Hero, 2014a; Krishnamurthy, Kandasamy, Poczos, and
Wasserman, 2015; Kandasamy, Krishnamurthy, Poczos, and Wasserman, 2015; Gao,
Steeg, and Galstyan, 2015a; Gao, Steeg, and Galstyan, 2015b; Mukherjee, Tchetgen,
and Robins, 2015; Mukherjee, Tchetgen, and Robins, 2016; Moon, Sricharan, Gree-
newald, and Hero, 2016; Singh and Póczos, 2016b; Berrett, Samworth, and Yuan,
2019; Gao, Oh, and Viswanath, 2017b; Gao, Kannan, Oh, and Viswanath, 2017; Jiao,
Gao, and Han, 2018; Han, Jiao, Weissman, and Wu, 2017; Noshad, Moon, Sekeh, and
Hero, 2017; Wisler, Moon, and Berisha, 2017; Singh and Póczos, 2017; Noshad and
Hero III, 2018; Bulinski and Dimitrov, 2018; Bulinski and Kozhevin, 2018; Sekeh, Os-
elio, and Hero, 2018; Berrett and Samworth, 2019; Rubenstein, Bousquet, Djolonga,
Riquelme, and Tolstikhin, 2019; Sekeh and Hero, 2019; Ba and Lo, 2019; Goldfeld,
Greenewald, Polyanskiy, and Weed, 2019) on practical estimation of nonlinear inte-
gral functionals of probability densities, of the form

F (p) =

∫
X
ϕ(p(x)) dx, (5.10)

where φ : [0,∞) → R is nonlinear but smooth. Whereas minimax optimal esti-
mators have been long established, their computational complexity typically scales
as poorly as O(n3) (Birgé and Massart, 1995; Laurent, 1996; Kandasamy, Krishna-
murthy, Poczos, and Wasserman, 2015). Hence, this recent work has focused on
analyzing more computationally efficient (but less statistically efficient) estimators,
as well as on estimating information-theoretic quantities such as variants of entropy,
mutual information, and divergence, for which φ can be locally non-smooth (e.g.,
φ = log), and can hence follow somewhat different minimax rates.

As discussed in detail by Laurent (1996), under Sobolev smoothness assump-
tions on p, estimation of quadratic functionals (such as those considered in this pa-
per) is key to constructing minimax rate-optimal estimators for general functionals
of the form (5.10). The reason for this is that minimax rate-optimal estimators of
F (p) can often be constructed by approximating a second-order Taylor (a.k.a., von
Mises (Kandasamy, Krishnamurthy, Poczos, and Wasserman, 2015)) expansion of F
around a density estimate p̂ of p that is itself minimax rate-optimal (with respect to
integrated mean squared error). Informally, if we expand F (p) as

F (p) = F (p̂) + 〈∇F (p̂), p− p̂〉L2 +
〈
p− p̂, (∇2F (p̂))p− p̂

〉
L2 +O

(
‖p− q‖3L2

)
, (5.11)

where ∇F (p̂) and ∇2F (p̂) are the first and second order Frechet derivatives of F at
p̂.

In the expansion (5.11), the first term is a simple plug-in estimate, and the second
term is linear in p, and can therefore be estimated easily by an empirical mean. The
remaining term is precisely a quadratic functional of the density, of the type we seek
to estimate in this paper. Indeed, to the best of our knowledge, this is the approach
taken by all estimators that are known to achieve minimax rates (Birgé and Massart,
1995; Laurent, 1996; Krishnamurthy, Kandasamy, Poczos, and Wasserman, 2014;
Kandasamy, Krishnamurthy, Poczos, and Wasserman, 2015; Mukherjee, Tchetgen,
and Robins, 2015; Mukherjee, Tchetgen, and Robins, 2016) for general functionals of
the form (5.10).
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Interestingly, the estimators studied in the recent papers above are all based on
either kernel density estimators (Singh and Póczos, 2014b; Singh and Póczos, 2014a;
Krishnamurthy, Kandasamy, Poczos, and Wasserman, 2014; Krishnamurthy, Kan-
dasamy, Poczos, and Wasserman, 2015; Kandasamy, Krishnamurthy, Poczos, and
Wasserman, 2015; Moon, Sricharan, Greenewald, and Hero, 2016; Mukherjee, Tchet-
gen, and Robins, 2015; Mukherjee, Tchetgen, and Robins, 2016) or k-nearest neighbor
methods (Moon and Hero, 2014b; Moon and Hero, 2014a; Singh and Póczos, 2016b;
Berrett, Samworth, and Yuan, 2019; Gao, Oh, and Viswanath, 2017b). This contrasts
with our approach, which is more comparable to orthogonal series density estima-
tion; given the relative efficiency of computing orthogonal series estimates (e.g., via
the fast Fourier transform), it may be desirable to try to adapt our estimators to these
classes of functionals.

When moving beyond Sobolev assumptions, only estimation of very specific
functionals has been studied. For example, under RKHS assumptions, only estima-
tion of maximum mean discrepancy (MMD)(Gretton, Borgwardt, Rasch, Schölkopf,
and Smola, 2012; Ramdas, Reddi, Póczos, Singh, and Wasserman, 2015; Tolstikhin,
Sriperumbudur, and Schölkopf, 2016), has received much attention. Hence, our
work significantly expands our understanding of minimax functional estimation in
this setting. More generally, our work begins to provide a framework for a uni-
fied understanding of functional estimation across different types of smoothness as-
sumptions.

Along a different line, there has also been some work on estimating Lp norms
for regression functions, under similar Sobolev smoothness assumptions (Lepski, Ne-
mirovski, and Spokoiny, 1999). However, the problem of norm estimation for regres-
sion functions turns out to have quite different statistical properties and requires sig-
nificantly different estimators and analysis, compared to norm estimation for den-
sity functions. Generally, the problem for densities is statistically easier in terms
of having a faster convergence rate under a comparable smoothness assumption;
this is most obvious when p = 1, since the L1 norm of a density is always 1, while
the L1 norm of a regression function is less trivial to estimate. However, this is
true more generally as well. For example, Lepski, Nemirovski, and Spokoiny (1999)
showed that, under s-order Sobolev assumptions, the minimax rate for estimating
the L2 norm of a 1-dimensional regression function (up to log factors) is � n−

4s
4s+1 ,

whereas the corresponding rate for estimating the L2 norm of a density function is
� n−min{ 8s

4s+1
,1}, which is parametric when s ≥ 1/4. To the best of our knowledge,

there has been no work on the natural question of estimating Sobolev or other more
general quadratic functionals of regression functions.

5.4.3 Applications

Finally, although this paper focuses on estimation of general inner products from
the perspective of statistical theory, we mention a few of the many applications that
motivate the study of this problem.

Estimates of quadratic functionals can be directly used for nonparametric goodness-
of-fit, independence, and two-sample testing (Anderson, Hall, and Titterington, 1994;
Dumbgen, 1998; Ingster and Suslina, 2012; Goria, Leonenko, Mergel, and Novi In-
verardi, 2005; Pardo, 2005; Chwialkowski, Ramdas, Sejdinovic, and Gretton, 2015).
They can also by used to construct confidence sets for a variety of nonparametric
objects (Li, 1989; Baraud, 2004; Genovese and Wasserman, 2005), as well as for pa-
rameter estimation in semi-parametric models (Wolsztynski, Thierry, and Pronzato,
2005b).
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In machine learning, Sobolev-weighted distances can also be used in transfer
learning (Du, Koushik, Singh, and Póczos, 2017) and transduction learning (Quadrianto,
Petterson, and Smola, 2009) to measure relatedness between source and target do-
mains, helping to identify when transfer can benefit learning. Semi-inner products
can be used as kernels over probability distributions, enabling generalization of a
wide variety of statistical learning methods from finite-dimensional vectorial inputs
to nonparametric distributional inputs (Sutherland, 2016). This distributional learning
approach has been applied to many diverse problems, including image classifica-
tion (Póczos, Xiong, and Schneider, 2011; Póczos, Xiong, Sutherland, and Schneider,
2012), galaxy mass estimation (Ntampaka, Trac, Sutherland, Battaglia, Póczos, and
Schneider, 2015), ecological inference (Flaxman, Wang, and Smola, 2015; Flaxman,
Sutherland, Wang, and Teh, 2016), aerosol prediction in climate science (Szabó, Gret-
ton, Póczos, and Sriperumbudur, 2015), and causal inference (Lopez-Paz, Muandet,
Schölkopf, and Tolstikhin, 2015). Finally, it has recently been shown that the losses
minimized in certain implicit generative models can be approximated by Sobolev
and related distances (Liang, 2017). Further applications of these quantities can be
found in (Principe, 2010).

5.5 Upper Bounds

In this section, we provide upper bounds on minimax risk. Specifically, we propose
estimators for semi-inner products, semi-norms, and pseudo-metrics, and bound the
risk of the semi-inner product estimator; identical bounds (up to constant factors)
follow easily for semi-norms and pseudo-metrics.

5.5.1 Proposed Estimators

Our proposed estimator ŜZ of 〈P,Q〉a consists of simply plugging estimates of φP
and Q̃ into a truncated version of the summation in Equation (5.2). Specifically, since

φP (z) = E
X∼P

[
ψz(X)

]
,

we estimate each φP (z) by φ̂P (z) := 1
n

∑n
i=1 ψz(Xi) and each φQ(z) by φ̂Q(z) :=

1
n

∑n
i=1 ψz(Yi). Then, for some finite set Z ⊆ Z (a tuning parameter to be chosen

later) our estimator ŜZ for the product (5.2) is

ŜZ :=
∑
z∈Z

φ̂P (z)φ̂Q(z)

a2
z

. (5.12)

To estimate the squared semi-norm ‖P‖2a from a single sampleX1, . . . , Xn
i.i.d.∼ P , we

use

N̂Z :=
∑
z∈Z

φ̂P (z)φ̂P (z)′

a2
z

. (5.13)

where φ̂P (z) is estimated using the first half X1, . . . , Xbn/2c of the sample, φ̂P (z)′ is
estimated using the second half Xbn/2c+1, . . . , Xn of the sample. While it is not clear
that sample splitting is optimal in practice, it allows us to directly apply convergence
results for the semi-inner product, which assume the samples from the two densities
are independent.
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To estimate the squared pseudo-metric ‖P−Q‖2a from two samplesX1, . . . , Xn
i.i.d.∼

P and Y1, . . . , Yn
i.i.d.∼ Q, we combine the above inner product and norm estimators

according to the formula (5.7), giving

ρ̂Z = N̂Z + M̂Z − 2ŜZ ,

where M̂Z denotes the analogue of the norm estimator (5.13) applied to Y1, . . . , Yn.

5.5.2 Bounding the risk of ŜZ

Here, we state upper bounds on the bias, variance, and mean squared error of the
semi-inner product estimator ŜZ , beginning with an easy bound on the bias of ŜZ
(proven in Appendix 5.9.1):

Proposition 24 (Upper bound on bias of ŜZ). Suppose P,Q ∈ Hb. Then,∣∣∣B [ŜZ]∣∣∣ ≤ ‖P‖b‖Q‖b sup
z∈Z\Z

b2z
a2
z

, (5.14)

where B
[
ŜZ

]
:= E

[
ŜZ

]
− 〈P,Q〉a denotes the bias of ŜZ .

Note that for the above bound to be non-trivial, we require bz → 0 faster than
az as ‖z‖ → ∞ which ensures that supz∈Z\Z

bz
az
< ∞. While (5.14) does not explic-

itly depend on the sample size n, in practice, the parameter set Z will be chosen
to grow with n, and hence the supremum over Z\Z will decrease monotonically
with n. Next, we provide a bound on the variance of ŜZ , whose proof, given in
Appendix 5.9.2, is more involved.

Proposition 25 (Upper bound on variance of ŜZ). Suppose P,Q ∈ Hb. Then,

V[ŜZ ] ≤ 2‖P‖2‖Q‖2
n2

∑
z∈Z

1

a4
z

+
‖Q‖2b‖P‖b + ‖P‖2b‖Q‖b

n
Ra,b,Z +

2‖P‖2a‖Q‖2a
n

(5.15)

where V denotes the variance operator and

Ra,b,Z :=

(∑
z∈Z

b4z
a8
z

)1/4(∑
z∈Z

(
bz
a2
z

)8
)1/8(∑

z∈Z
b8z

)1/8

. (5.16)

Having bounded the bias and variance of the estimator ŜZ , we now turn to
the mean squared error (MSE). Via the usual decomposition of MSE into (squared)
bias and variance, Propositions 24 and 25 together immediately imply the following
bound:

Theorem 26 (Upper bound on MSE of ŜZ). Suppose P,Q ∈ Hb. Then,

MSE
[
ŜZ

]
≤ ‖P‖2b‖Q‖2b sup

z∈Z\Z

b4z
a4
z

+
2‖P‖2‖Q‖2

n2

∑
z∈Z

1

a4
z

+
‖Q‖2b‖P‖b + ‖P‖2b‖Q‖b

n
Ra,b,Z +

2‖P‖2a‖Q‖2a
n

, (5.17)

where Ra,b,Z is as defined in (5.16).
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Corollary 27 (Norm estimation). In the particular case of norm estimation (i.e., when
Q = P ), this simplifies to:

MSE
[
ŜZ

]
≤ ‖P‖4b sup

z∈Z\Z

b4z
a4
z

+
2‖P‖22
n2

∑
z∈Z

1

a4
z

+
2‖P‖3b
n

Ra,b,Z +
2‖P‖4a
n

. (5.18)

5.5.3 Discussion of Upper Bounds

Two things might stand out that distinguish the above variance bound from many
other nonparametric variance bounds: First, the rate depends on the smoothness of
P,Q ∈ Hb. Smoothness assumptions in nonparametric statistics are usually needed
only to bound the bias of estimators (Tsybakov, 2008). The reason the smoothness
appears in this variance bound is that the estimand in Equation (5.2) includes prod-
ucts of the Fourier coefficients of P and Q. Hence, the estimates φ̂P (z) of φP (z) are
scaled by φ̂Q(z), and vice versa, and as a result, the decay rates of φP (z) and φQ(z)

affect the variance of the tails of ŜZ . One consequence of this is that the convergence
rates exhibit a phase transition, with a parametric convergence rate when the tails of
φP and Q̃ are sufficiently light, and a slower rate otherwise.

Second, the bounds are specific to the Fourier basis (as opposed to, say, any uni-
formly bounded basis, e.g., one with supz∈Z,x∈X |ψz(x)| ≤ 1). The reason for this is
that, when expanded, the variance includes terms of the form EX∼P [φy(X)ψz(X)],
for some y 6= z ∈ Z . In general, these covariance-like terms are difficult to bound
tightly; for example, the uniform boundedness assumption above would only give a
bound of the form EX∼P [|φy(X)ψz(X)|] ≤ min{φP (y), φP (z)}. For the Fourier basis,
however, the recurrence relation φyψz = φy+z allows us to bound EX∼P [φy(X)ψz(X)] =

EX∼P [φy+z(X)] = φP (y+z) in terms of assumptions on the decay rates of the coeffi-
cients ofP . It turns out that φP (y+z) decays significantly faster than min{φP (y), φP (z)},
and this tighter bound is needed to prove optimal convergence rates.

More broadly, this suggests that convergence rates for estimating inner products
in terms of weights in a particular basis may depend on algebraic properties of that
basis. For example, another common basis, the Haar wavelet basis, satisfies a dif-
ferent recurrence relation: φyψz ∈ {0, φy, ψz}, depending on whether (and how) the
supports of φy and ψz are nested or disjoint. We leave investigation of this and other
bases for future work.

Clearly, supZ⊆Z Ra,b,Z < ∞ if and only if b4z/a8
z is summable (i.e.,

∑
z∈Z b

4
z/a

8
z <

∞). Thus, assuming |Z| = ∞, this already identifies the precise condition required
for the minimax rate to be parametric. When it is the case that

Ra,b,Z
n
∈ O

(
sup
z∈Z\Z

b4z
a4
z

+
1

n2

∑
z∈Z

1

a4
z

)
,

the third term in (5.17) will be dominated by the first and third terms, and so the
upper bound simplifies to order

MSE
[
ŜZ∗

]
.

1

n
+ min
Z⊆Z

[
sup
z∈Z\Z

b4z
a4
z

+
1

n2

∑
z∈Z

1

a4
z

]
. (5.19)

This happens for every choice of az and bz we consider in this paper, including
the Sobolev (polynomial decay) case and the RKHS case. However, simplifying the
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bound further requires some knowledge of the form of a and/or b, and we develop
this in several cases in Section 5.7. In Section 5.8, we also consider some heuristics
for approximately simplifying (5.19) in certain settings.

5.6 Lower Bounds

In this section, we provide a lower bound on the minimax risk of the estimation
problems described in Section 5.3. Specifically, we use a standard information theo-
retic framework to lower bound the minimax risk for semi-norm estimation; bounds
of the same rate follow easily for inner products and pseudo-metrics. In a wide range
of cases, our lower bound matches the MSE upper bound (Theorem 26) presented in
the previous section.

Theorem 28 (Lower Bound on Minimax MSE). Suppose X has finite base measure
µ(X ) = 1 and suppose the basis {ψz}z∈Z contains the constant function φ0 = 1 and is
uniformly bounded (i.e., supz∈Z ‖ψz‖∞ < ∞). Define Zζn := {z ∈ ZD : ‖z‖∞ ≤ ζn},
Aζn :=

∑
z∈Zζn

a−2
z andBζn :=

∑
z∈Zζn

b−2
z . IfBζn ∈ Ω

(
ζ2D
n

)
, then we have the minimax

lower bound

inf
Ŝ

sup
‖h‖b≤1

E
[(
Ŝ − ‖h‖2a

)2
]
∈ Ω

(
max

{
A2
ζn

B2
ζn

, n−1

})
,

where ζn is chosen to satisfy B2
ζn
� ζDn n2. Also, if Bζn ∈ o

(
ζ2D
n

)
, then we have the (looser)

minimax lower bound

inf
Ŝ

sup
‖h‖b≤1

E
[(
Ŝ − ‖h‖2a

)2
]
∈ Ω

(
max

{
A2
n2/3D

n4/3
, n−1

})
.

Remark 29. The uniform boundedness assumption permits the Fourier basis, our
main case of interest, but also allows other bases (see, e.g., the “generalized Fourier
bases” used in Corollary 2.2 of Liang (2017)).

Remark 30. The condition that Bζn ∈ Ω
(
ζ2D
n

)
is needed to ensure that the “worst-

case” densities we construct in the proof of Theorem 28 are indeed valid probability
densities (specifically, that they are non-negative). Hence, this condition would no
longer be necessary if we proved results in the simpler Gaussian sequence model,
as in many previous works on this problem (e.g., (Cai, 1999; Cai and Low, 2005)).
However, when Bζn ∈ o

(
ζ2D
n

)
, density estimation, and hence the related problem of

norm estimation, become asymptotically easier than the analogous problems under
the Gaussian sequence model.

Remark 31. Intuitively, the ratioAζn/Bζn measures the relative strengths of the norms
‖ · ‖a and ‖ · ‖b. As expected, consistent estimation is possible if and only if ‖ · ‖b is a
stronger norm than ‖ · ‖a.

5.7 Special Cases

In this section, we develop our lower and upper results for several special cases of
interest. The results of this section are summarized in Table 5.1.
Notation: Here, for simplicity, we assume that the estimator ŜZ uses a choice of Z
that is symmetric across dimensions; in particular, Z =

∏D
j=1{φ−ζn , ..., φ0, ..., φζn}
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(for some ζn ∈ N depending on n) is the Cartesian product of D sets of the first
2ζn + 1 integers. Throughout this section, we use . and & to denote inequality up
to log n factors. Although we do not explicitly discuss estimation of L2 norms, it
appears as a special case of the Sobolev case with s = 0.

5.7.1 Sobolev

For some s, t ≥ 0, az = ‖z‖−s and bz = ‖z‖−t.
Upper Bound: By Proposition 24, B[ŜZ ] . ζ

2(s−t)
n , and, by Proposition 25,

V[ŜZ ] .
ζ4s+D
n

n2
+
ζ

4s−3t+D/2
n

n
+

1

n

Thus,

MSE[ŜZ ] . ζ4(s−t)
n +

ζ4s+D
n

n2
+
ζ

4s−3t+D/2
n

n
+

1

n
.

One can check that ζ4(s−t)
n + ζ4s+D

n

n2 is minimized when ζn � n
2

4t+D , and that, for this

choice of ζn, the ζ
4s−3t+D/2
n

n term is of lower order, giving the convergence rate

MSE[ŜZ ] � n
8(s−t)
4t+D .

Lower Bound: Note that Aζn � ζ2s+D
n and Bζn � ζ2t+D

n . Solving B2
ζn

= ζDn n
2 gives

ζn � n
2

4t+D . Thus, Theorem 28 gives a minimax lower bound of

inf
Ŝ

sup
‖p‖b,‖q‖b≤1

E
[(
Ŝ − 〈p, q〉b

)2
]
&
A2
ζn

B2
ζn

= ζ4(s−t)
n = n

8(s−t)
4t+D ,

matching the upper bound. Note that the rate is parametric (� n−1) when t ≥ 2s +
D/4, and slower otherwise.

5.7.2 Gaussian RKHS

For some t ≥ s ≥ 0, az = e−s‖z‖
2
2 and bz = e−t‖z‖

2
2 .

Upper Bound: By Proposition 24, B[ŜZ ] . e2(s−t)ζ2
n . If we use the upper bound∑

z∈Z
eθ‖z‖

2
2 ≤ CθζDn eθζ

2
n ,

for any θ > 0 and some Cθ > 0, then Proposition 25 gives

V[ŜZ ] =
ζDn e

4sζ2
n

n2
+
ζ

89D/20
n e(4s−3t)ζ2

n

n
+

1

n
.

Thus,

MSE[ŜZ ] . e4(s−t)ζ2
n +

ζDn e
sζ2
n

n2
+
ζ

89D/20
n e(4s−3t)ζ2

n

n
+

1

n
.
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One can check that e4(s−t)ζ2
n + ζDn e

sζ2n

n2 is minimized when ζn �
√

logn
2t , and that, for

this choice of ζn, the ζ89D/20
n e(4s−3t)ζ2

n term is of lower order, giving an MSE conver-
gence rate of

MSE[ŜZ ] . n
2(s−t)
t = n2(s/t−1).

Lower Bound: Again, we use the bound

Aζn =
∑
z∈Zζn

e2s‖z‖22 . ζDn e
2sζ2

n ,

as well as the trivial lower bound Bζn =
∑

z∈Zζn
e2s‖z‖22 ≥ e2sζ2

n . Solving B2
ζn

= ζDn n
2

gives ζn �
√

logn
2t up to log logn factors. Thus, ignoring log n factors, Theorem 28

gives a minimax lower bound of

inf
Ŝ

sup
‖p‖b,‖q‖b≤1

E
[(
Ŝ − 〈p, q〉b

)2
]
& n

2(s−t)
t ,

for some C > 0, matching the upper bound rate. Note that the rate is parametric
when t ≥ 2s, and slower otherwise.

5.7.3 Exponential RKHS

For some t ≥ s ≥ 0, az = e−s‖z‖1 and bz = e−t‖z‖1 .
Upper Bound: By Proposition 24, B[ŜZ ] . e2(s−t)ζn . Since, for fixed D,∑

z∈Z
er‖z‖1 � erζn+D � erζn ,

by Proposition 25, we have

V[ŜZ ] � e4sζn

n2
+
e(4s−3t)ζn

n
+

1

n
,

giving a mean squared error bound of

MSE[ŜZ ] � e4(s−t)ζn +
e4sζn

n2
+
e(4s−3t)ζn

n
+

1

n
.

One can check that e4(s−t)ζn + e4sζn

n2 is minimized when ζn � logn
2t , and that, for this

choice of ζn, the e(4s−3t)ζn

n term is of lower order, giving an MSE convergence rate of

MSE[ŜZ ] . n
2(s−t)
t = n2(s/t−1).

Lower Bound: Note that Aζn � e2sζn and Bζn = e2tζn . Solving B2
ζn

= ζDn n
2 gives, up

to log logn factors, ζn � logn
2t . Thus, Theorem 28 gives a minimax lower bound of

inf
Ŝ

sup
‖p‖b,‖q‖b≤1

E
[(
Ŝ − 〈p, q〉b

)2
]
& n

2(s−t)
t ,

for some C > 0, matching the upper bound rate. Note that the rate is parametric
when t ≥ 2s, and slower otherwise.
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5.7.4 Logarithmic decay

For some t ≥ s ≥ 0, az = (log ‖z‖)−s and bz = (log ‖z‖)−t. Note that, since our lower
bound requires Bζn ∈ Ω(ζ2D

n ), we will only study the upper bound for this case.

Upper Bound: By Proposition 24, B[ŜZ ] . (log ζn)2(s−t). By the upper bound∑
z∈Zζn

(log ‖z‖)θ ≤ CθζDn (log ζn)θ ,

for any θ > 0 and some Cθ > 0, Proposition 25 gives

V[ŜZ ] =
ζDn (log ζn)4s

n2
+
ζ

89D/20
n (log ζn)4s−3t

n
+

1

n
,

giving a mean squared error bound of

MSE[ŜZ ] . (log ζn)4(s−t) +
ζDn (log ζn)4s

n2
+
ζ

89D/20
n (log ζn)4s−3t

n
+

1

n
.

One can check that (log ζn)4(s−t)+ ζ
89D/20
n (log ζn)4s−3t

n is minimized when ζ89D/20
n (log ζn)4t+D �

n, and one can check that, for this choice of ζn, the ζDn (log ζn)4s

n2 term is of lower order.
Thus, up to log n factors, ζn � n2/D, and so, up to log logn factors,

(log ζn)4(s−t) � (log n)4(s−t) .

5.7.5 Sinc RKHS

For any s ∈ (0,∞)D, the sincs kernel, defined by

Ks
sinc(x, y) =

d∏
j=1

sj
π

sinc

(
xj − yj
sj

)
,

where

sinc(x) =

{
sin(x)
x if x 6= y

1 else
,

generates the RKHS Hssinc =
{
f ∈ L2 : ‖f‖Ks

sinc
<∞

}
, of band-limited functions,

where the norm is generated by the inner product 〈f, g〉Ks
sinc

= 〈f, g〉a, where az =

1{|z|≤s} (with the convention that 0
0 = 0). If we assume that p ∈ Htsinc, where t ≤ s,

then fixing Z := {z ∈ ZD : |z| ≤ s}, by Proposition 24, B[ŜZ ] = 0, and, by Proposi-
tion 25, one can easily check that V[ŜZ ] . n−1. Thus, without any assumptions on
P , we can always estimate ‖P‖Ks

sinc
at the parametric rate.

5.8 Discussion

In this paper, we focused on the case of inner product weights and density coeffi-
cients in the Fourier basis, which play well-understood roles in widely used spaces
such as Sobolev spaces and reproducing kernel Hilbert spaces with translation-invariant
kernels.

For nearly all choices of weights {az}z∈Z and {bz}z∈Z , ignoring the parametric
1/n term that appears in both the upper and lower bounds, the upper bound boils
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bz = log−t ‖z‖ bz = ‖z‖−t bz = e−t‖z‖1 bz = e−t‖z‖
2
2

az = log−s ‖z‖ . (log n)4(s−t) max
{
n−1, n

−8t
4t+D

}
n−1 n−1

az = ‖z‖−s ∞ max

{
n−1, n

8(s−t)
4t+D

}
n−1 n−1

az = e−s‖z‖1 ∞ ∞ max
{
n−1, n2 s−t

t

}
n−1

az = e−s‖z‖
2
2 ∞ ∞ ∞ max

{
n−1, n2 s−t

t

}
TABLE 5.1: Minimax convergence rates for different combinations of
az and bz . Results are given up to log n factors, except the case when
both az and bz are logarithmic, which is given up to log log n factors.
Note that, in this last case, only the upper bound is known. A value
of∞ indicates that the estimand itself may be∞ and consistent esti-

mation is impossible.

down to

min
ζn∈N

b4ζn
a4
ζn

+

∑
z∈Zζn

a−4
z

n2
,

or, equivalently,
b4ζn
a4
ζn

where
b4ζn
a4
ζn

=

∑
z∈Zζn

a−4
z

n2

and the lower bound boils down to(∑
z∈Zζn

a−2
z∑

z∈Zζn
b−2
z

)2

, where

 ∑
z∈Zζn

b−2
z

2

= ζDn n
2.

These rates match if

a−4
ζn

b−4
ζn

�

(∑
z∈Zζn

a−2
z∑

z∈Zζn
b−2
z

)2

and
b4ζn

(∑
z∈Zζn

b−2
z

)2

a4
ζn

∑
z∈Zζn

a−4
z

� ζDn (5.20)

Furthermore, if the equations in (5.20) hold modulo logarithmic factors, then the
upper and lower bounds match modulo logarithmic factors. This holds almost au-
tomatically if bz decays exponentially or faster, since, then, ζn grows logarithmically
with n. Noting that the lower bound requires Bζn ∈ Ω

(
ζ2D
n

)
, this also holds auto-

matically if bz = |z|t with t ≥ D/2.
Table 5.1 collects the derived minimax rates for various standard choices of a

and b. For entries below the diagonal, bz/az → ∞ as ‖z‖ → ∞, and so Hb 6⊆ Ha.
As a result, consistent estimation is not possible in the worst case. The diagonal
entries of Table 5.1, for which a and b have the same form, are derived in Section 5.7
directly from our upper and lower bounds on M(a, b). These cases exhibit a phase
transition, with convergence rates depending on the parameters s and t. When t
is sufficiently larger than s, the variance is dominated by the low-order terms of
the estimand (5.2), giving a convergence rate of � n−1. Otherwise, the variance is
dominated by the tail terms of 5.2, in which case minimax rates depend smoothly on
s and t. This manifests in the max{n−1, nR(s,t)} form of the minimax rates, where R
is non-decreasing in s and non-increasing in t.

Notably, the data dimension D plays a direct role in the minimax rate only in
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the Sobolev case when t < 2s + D/4. Otherwise, the role of D is captured entirely
within the assumption that p, q ∈ Hb. This is consistent with known rates for es-
timating other functionals of densities under strong smoothness assumptions such
as the RKHS assumption (Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012;
Ramdas, Reddi, Póczos, Singh, and Wasserman, 2015).

Finally, we note some consequences for more general (non-Hilbert) Sobolev spaces
W s,p, defined for s ≥ 0, p ≥ 1 as the set of functions in Lp having weak sth deriva-
tives in Lp. The most prominent example is that of the Hölder spaces W s,∞ of essen-
tially bounded functions having essentially bounded sth weak derivatives; Hölder
spaces are used widely in nonparametric statistics (Bickel and Ritov, 1988; Tsybakov,
2008). Recall that, for p ≤ q and any s ≥ 0, these spaces satisfy the embedding
Ws,q ⊆ Ws,p (Villani, 1985), and that W s,2 = Hs. Then, for P,Q ∈ Wt,p our upper
bound in Theorem 26 implies an identical upper bound when p ≥ 2, and our lower
bound in Theorem 28 implies an identical lower bound when p ≤ 2.

Further work is needed to verify tightness of these bounds for p 6= 2. Moreover,
while this paper focused on the Fourier basis, it is also interesting to consider other
bases, which may be informative in other spaces. For example, wavelet bases are
more natural representations in a wide range of Besov spaces (Donoho and John-
stone, 1995). It is also of interest to consider non-quadratic functionals as well as
non-quadratic function classes. In these cases simple quadratic estimators such as
those considered here may not achieve the minimax rate, but it may be possible to
correct this with simple procedures such as thresholding, as done, for example, by
Cai and Low (2005) in the case of Lp balls with p < 2. Finally, the estimators consid-
ered here require some knowledge of the function class in which the true density lies.
It is currently unclear whether and how the various strategies for designing adaptive
estimators, such as block-thresholding (Cai, 1999) or Lepski’s method (Lepski and
Spokoiny, 1997), which have been applied to estimate quadratic functionals over Lp
balls and Besov spaces (Efromovich and Low, 1996; Cai and Low, 2006), may confer
adaptivity when estimating functionals over general quadratically weighted spaces.

5.9 Proofs

In this section, we present the proofs of main results.

5.9.1 Proof of Proposition 24

We first bound the bias
∣∣∣E [ŜZ]− 〈P,Q〉a∣∣∣, where randomness is over the dataX1, ..., Xn

i.i.d.∼

P , and Y1, ..., Yn
i.i.d.∼ Q. Since

ŜZ =
∑
z∈Z

φ̂P (z)φ̂Q(z)

a2
z

is bilinear in P̂ and Q̂, which are independent, and

φ̂P (z) =
1

n

n∑
i=1

ψz(Xi) and φ̂Q(z) =
1

n

n∑
i=1

ψz(Yi)
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are unbiased estimators of φP (z) = EX∼P [ψz(X)] and φQ(z) = EY∼Q [ψz(Y )], re-
spectively, we have that

E
[
ŜZ

]
=
∑
z∈Z

E
[
φ̂P (z)

]
E
[
φ̂Q(z)

]
a2
z

=
∑
z∈Z

φP (z)φQ(z)

a2
z

.

Hence, the bias is

∣∣∣E [ŜZ]− 〈P,Q〉a∣∣∣ =

∣∣∣∣∣∣
∑

z∈Z\Z

φP (z)φQ(z)

a2
z

∣∣∣∣∣∣ .
If p, q ∈ Hb ⊂ Ha ⊆ L2 defined by

Hb :=

{
f ∈ L2 : ‖f‖b :=

∑
z∈Z

f̃2
z

b2z
<∞

}
,

then, applying Cauchy-Schwarz followed by Hölder’s inequality, we have

∣∣∣E [ŜZ]− 〈P,Q〉a∣∣∣ =

∣∣∣∣∣∣
∑

z∈Z\Z

φP (z)φQ(z)

a2
z

∣∣∣∣∣∣ ≤
√√√√ ∑

z∈Z\Z

|φP (z)|2
a2
z

∑
z∈Z\Z

|φQ(z)|2
a2
z

=

√√√√ ∑
z∈Z\Z

b2z
a2
z

|φP (z)|2
b2z

∑
z∈Z\Z

b2z
a2
z

|φQ(z)|2
b2z

≤ ‖P‖b‖Q‖b sup
z∈Z\Z

b2z
a2
z

.

Note that this recovers the bias bound of Singh, Du, and Póczos (2016) in the
Sobolev case: If az = z−s and bz = z−t with t ≥ s, then∣∣∣E [ŜZ]− 〈P,Q〉a∣∣∣ ≤ ‖P‖b‖Q‖b|Z|2(s−t),

where |Z| denotes the cardinality of the index set Z.

5.9.2 Proof of Proposition 25

In this section, we bound the variance of V[SZ ], where, again, randomness is over
the data X1, ..., Xn, Y1, ..., Yn. The setup and first several steps of our proof are quite
general, applying to arbitrary bases. However, without additional assumptions, our
approach eventually hits a roadblock. Thus, to help motivate our assumptions and
proof approach, we begin by explaining this general setup in Section 5.9.2, and then
proceed with steps specific to the Fourier basis in Section 5.9.2.

General Proof Setup

Our bound is based on the Efron-Stein inequality (Efron and Stein, 1981). For this,
suppose that we draw extra independent samples X ′1 ∼ p and Y ′1 ∼ q, and let Ŝ′Z
and Ŝ′′Z denote the estimator given in Equation (5.12) when we replace X1 with X ′1
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and when we replace Y1 with Y ′1 , respectively, that is

Ŝ′Z :=
∑
z∈Z

φ̂P (z)′φ̂Q(z)

a2
j

and Ŝ′′Z :=
∑
z∈Z

φ̂P (z)φ̂Q(z)′

a2
j

,

where

φ̂P (z)′ :=
1

n

(
ψz(X

′
1) +

n∑
i=2

ψz(Xi)

)
, and φ̂Q(z)′ :=

1

n

(
ψz(Y

′
1) +

n∑
i=2

ψz(Y
′
i )

)
.

Then, since X1, ..., Xn and Y1, ..., Yn are each i.i.d., the Efron-Stein inequality
(Efron and Stein, 1981) gives

V
[
ŜZ

]
≤ n

2

(
E
[∣∣∣ŜZ − Ŝ′Z∣∣∣2]+ E

[∣∣∣ŜZ − Ŝ′′Z∣∣∣2]) . (5.21)

We now study just the first term as the analysis of the second is essentially identical.
Expanding the definitions of ŜZ and Ŝ′Z , and leveraging the fact that all terms in
φ̂P (z)− φ̂P (z)′ not containing X1 or X ′1 cancel,

E
[∣∣∣ŜZ − Ŝ′Z∣∣∣2] = E


∣∣∣∣∣∣
∑
z∈Z

(
φ̂P (z)− φ̂P (z)′

)
φ̂Q(z)

a2
z

∣∣∣∣∣∣
2


= E

∑
z∈Z

∑
w∈Z


(
φ̂P (z)− φ̂P (z)′

)
φ̂Q(z)

a2
z



(
P̂w − P̂ ′w

)
Q̂w

a2
w




=
1

n2

∑
z∈Z

∑
w∈Z

E

[
Q̂wφ̂Q(z)

(ψz(X1)− ψz(X ′1)) (φw(X1)− φw(X ′1))

a2
za

2
w

]

=
1

n2

∑
z∈Z

∑
w∈Z

E
[
φ̂Q(z)Q̂w

] E [(ψz(X1)− ψz(X ′1)) (φw(X1)− φw(X ′1))
]

a2
za

2
w

=
2

n2

∑
z∈Z

∑
w∈Z

E
[
φ̂Q(z)Q̂w

] E [ψz(X)φw(X)
]
− E [ψz(X)]E

[
φw(X)

]
a2
za

2
w

=
2

n2

∑
z∈Z

∑
w∈Z

E
[
φ̂Q(z)Q̂w

] E [ψz(X)φw(X)
]
− φP (z)P̃w

a2
za

2
w

. (5.22)

Expanding the E
[
φ̂Q(z)Q̂w

]
term, we have

E
[
φ̂Q(z)Q̂w

]
=

1

n2

n∑
i=1

n∑
j=1

E
[
ψz(Yi)φw(Yj)

]
=

1

n2

n∑
i=1

E
[
ψz(Yi)φw(Yi)

]
+

1

n2

n∑
i=1

∑
j 6=i

E
[
ψz(Yi)

]
E [φw(Yj)]

=
1

n
E
[
ψz(Y )φw(Y )

]
+
n− 1

n
φQ(z)Q̃w,
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which combined with Equation (5.22) yields

E
[∣∣∣ŜZ − Ŝ′Z∣∣∣2] =

2

n3

∑
z∈Z

∑
w∈Z

(
E
[
ψz(Y )φw(Y )

]
+ (n− 1)φQ(z)Q̃w

)

×
E
[
ψz(X)φw(X)

]
− φP (z)P̃w

a2
za

2
w

. (5.23)

To proceed beyond this point, it is necessary to better understand the covariance-
like term E

[
ψz(X)φw(X)

]
appearing in the above equation. If {ψz}z∈Z is an arbi-

trary orthonormal basis, it is difficult to argue more than that, via Cauchy-Schwarz,∣∣∣E [ψz(X)φw(X)
]∣∣∣ ≤√|E [|ψz(X)|2]E [|φw(X)|2]|.

However, considering, for example, the very well-behaved case when P is the uni-
form density on X , we would have (since {ψz}z∈Z is orthonormal) E

[
|ψz(X)|2

]
=

E
[
|φw(X)|2

]
= 1

µ(X ) , which does not decay as ‖z‖, ‖w‖ → ∞. If we were to follow
this approach, the Efron-Stein inequality would eventually give a variance bound
on ŜZ that includes a term of the form

(n− 1)

n2µ(X )

∑
z,w∈Z

φQ(z)Q̃w
a2
za

2
w

=
(n− 1)

n2µ(X )

(∑
z∈Z

φQ(z)

a2
z

)2

≤ 1

nµ(X )
‖q‖2b

∑
z∈Z

b2z
a4
z

.

While relatively general, this bound is loose, at least in the Fourier case. Hence, we
proceed along tighter analysis that is specific to the Fourier basis.

Variance Bounds in the Fourier Basis

In the case that {ψz}z∈Z is the Fourier basis, the identities ψz = φ−z and ψzφw =
ψz+w imply that E[ψz(X)φw(X)] = P̃z−w and E[φw(Y )ψz(Y )] = Q̃w−z , thus, the
expression (5.23) simplifies to

E
[∣∣∣ŜZ − Ŝ′Z∣∣∣2] =

2

n3

∑
z∈Z

∑
w∈Z

(
Q̃w−z + (n− 1)Q̃−zQ̃w

) P̃z−w − φP (z)P̃−w
a2
za

2
w

=
2

n3

∑
z∈Z

∑
w∈Z

Q̃w−zP̃z−w − Q̃w−zφP (z)P̃−w + (n− 1)Q̃−zQ̃wP̃z−w − (n− 1)Q̃−zQ̃wφP (z)P̃−w
a2
za

2
w

.

This contains four terms to bound, but they are dominated by the following three
main terms:

2

n3

∑
z∈Z

∑
w∈Z

Q̃w−zP̃z−w
a2
za

2
w

, (5.24)

2(n− 1)

n3

∑
z∈Z

∑
w∈Z

φQ(z)Q̃wP̃z−w
a2
za

2
w

, (5.25)

and
2(n− 1)

n3

∑
z∈Z

∑
w∈Z

φQ(z)Q̃wφP (z)P̃w
a2
za

2
w

. (5.26)
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Bounding (5.24): Applying the change of variables k = z − w gives∣∣∣∣∣ 2

n3

∑
z∈Z

∑
w∈Z

P̃z−wQ̃w−z
a2
za

2
w

∣∣∣∣∣ =
2

n3

∣∣∣∣∣ ∑
k∈z−Z

P̃kQ̃−k
∑
z∈Z

1

a2
za

2
z−k

∣∣∣∣∣ (∗)
≤ 2

n3

∑
k∈z−Z

∣∣∣P̃kQ̃−k∣∣∣∑
z∈Z

1

a4
z

≤ 2

n3

∑
k∈Z

∣∣∣P̃kQ̃−k∣∣∣∑
z∈Z

1

a4
z

≤ 2‖P‖2‖Q‖2
n3

∑
z∈Z

1

a4
z

, (5.27)

where in (∗), we use the fact that

fZ(k) :=
∑
z∈Z

1

a2
za

2
z−k

is the convolution (over Z) of {a−2
z }z∈Z with itself, which is always maximized when

k = 0.

Bounding (5.25): Applying Cauchy-Schwarz inequality twice, yields∣∣∣∣∣∑
z∈Z

∑
w∈Z

φQ(z)Q̃wP̃z−w
a2
za

2
w

∣∣∣∣∣ =

∣∣∣∣∣∑
z∈Z

φQ(z)

bz

∑
w∈Z

bz
a2
z

Q̃wP̃z−w
a2
w

∣∣∣∣∣
≤ ‖Q‖b

∑
z∈Z

(∑
w∈Z

bz
a2
z

Q̃wP̃z−w
a2
w

)2
1/2

= ‖Q‖b

∑
z∈Z

b2z
a4
z

(∑
w∈Z

Q̃wP̃z−w
a2
w

)2
1/2

≤ ‖Q‖b

(∑
z∈Z

b4z
a8
z

)1/4
∑
z∈Z

(∑
w∈Z

Q̃wP̃z−w
a2
w

)4
1/4

. (5.28)

Note that now we can view the expression∑
z∈Z

(∑
w∈Z

Q̃wP̃z−w
a2
w

)4
1/4

=

∥∥∥∥∥ Q̃a2
∗ P̃

∥∥∥∥∥
4

as the L4 norm of the convolution between the sequence Q̃/a2 and the sequence
P̃ . To proceed, we apply (a discrete variant of) Young’s inequality for convolu-
tions (Beckner, 1975), which states that, for constants α, β, γ ≥ 1 satisfying 1 + 1/γ =
1/α+ 1/β and arbitrary functions f ∈ Lα(RD), g ∈ Lβ(RD),

‖f ∗ g‖γ ≤ ‖f‖α‖g‖β.
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Applying Young’s inequality for convolutions with powers7 α = β = 8/5 (so that
α, β ≥ 1 and 1/α+ 1/β = 1 + 1/4), gives∑

z∈Z

(∑
w∈Z

Q̃wP̃z−w
a2
w

)4
1/4

≤

(∑
z∈Z

φQ(z)α

a2α
z

)1/α(∑
z∈Z

φP (z)β

)1/β

=

(∑
z∈Z

φQ(z)α

bαz

bαz
a2α
z

)1/α(∑
z∈Z

φP (z)β

bβz
bβz

)1/β

.

Since 2/α = 2/β ≥ 1, we can now apply Hölder’s inequality to each of the above
summations, with powers

(
2/α, 2α

2−α

)
=
(

2/β, 2β
2−β

)
=
(

5
4 ,

1
8

)
. This gives

(∑
z∈Z

φQ(z)α

bαz

bαz
a2α
z

)1/α

≤ ‖Q‖b

(∑
z∈Z

(
bz
a2
z

) 2α
2−α
) 2−α

2α

= ‖Q‖b

(∑
z∈Z

(
bz
a2
z

)8
)1/8

and (∑
z∈Z

φP (z)β

bβz
bβz

)1/β

≤ ‖P‖b

(∑
z∈Z

b
2β

2−β
z

) 2−β
2β

= ‖P‖b

(∑
z∈Z

b8z

)1/8

.

Combining these inequalities with inequality (5.28) gives∣∣∣∣∣∑
z∈Z

∑
w∈Z

φQ(z)Q̃wP̃z−w
a2
za

2
w

∣∣∣∣∣ ≤ ‖Q‖2b‖P‖bRa,b,Z ,
where Ra,b,Z is as in (5.16).

Bounding (5.26): Applying Cauchy-Schwarz yields

2(n− 1)

n3

∑
z∈Z

∑
w∈Z

Q̃wφQ(z)φP (z)P̃w
a2
za

2
w

=
2(n− 1)

n3

(∑
z∈Z

φQ(z)φP (z)

a2
z

)(∑
w∈Z

Q̃wP̃w
a2
w

)

≤ 2

n2

(∑
z∈Z

|φQ(z)|2

a2
z

)(∑
z∈Z

|φP (z)|2

a2
z

)
=

2‖P‖2a‖Q‖2a
n2

.

Plugging these into Efron-Stein yields the result.

5.9.3 Proof of Theorem 28

Proof: The Ω(n−1) term of the lower bound, reflecting parametric convergence when
the tails of the estimand (5.2) are light relative to the first few terms, follows from
classic information bounds (Bickel and Ritov, 1988). We focus on deriving the Ω(A2

ζ/B
2
ζ )

term, reflecting slower convergence when the estimand is dominated by its tail. To
do this, we consider the uniform density ψ0 and a family of 2|Zζ | small perturbations
of the form

gζ,τ = ψ0 + cζ
∑
z∈Zζ

τzψz, (5.29)

where ζ ∈ N, τ ∈ {−1, 1}Zζ , and cζ = B
−1/2
ζ .

7This seemingly arbitrary choice of α and β arises from analytically minimizing the final bound.
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We now separately consider the “smooth” case, in which Bζ ∈ Ω
(
ζ2D

)
, and the

“unsmooth” case, in which Bζ ∈ o
(
ζ2D

)
.

The smooth case (Bζ ∈ Ω
(
ζ2D

)
): By Le Cam’s Lemma (see, e.g., Section 2.3

of Tsybakov (2008)), it suffices to prove four main claims about the family of gζ,τ
functions defined in Equation (5.29):

1. Each ‖gζ,τ‖b ≤ 1.

2. Each
inf

τ∈{−1,1}Zζ
‖gζ,τ‖a − ‖ψ0‖a ≥

Aζ
Bζ

.

3. Each gζ,τ is a density function (i.e.,
∫
X gζ,τ = 1 and gζ,τ ≥ 0).

4. ζ and cζ are chosen (depending on n) such that

DTV

ψn0 , 1

2|Zζ |

∑
τ∈{−1,1}Zζ

gnζ,τ

 ≤ 1

2
.

For simplicity, for now, suppose Z = ND and Zζ = [ζ]D. For any τ ∈ {−1, 1}Zζ ,
let

gζ,τ = ψ0 + cζ
∑
z∈Zζ

τzψz.

By setting cζ = B
−1/2
ζ =

(∑
z∈Zζ b

−2
z

)−1/2
, we automatically ensure the first two

claims:
‖gζ,τ‖2b = c2

ζ

∑
z∈Zζ

b−2
z = 1,

and
inf

τ∈{−1,1}Zζ
‖gζ,τ‖2a − ‖ψ0‖2a = c2

ζ

∑
z∈Zζ

a−2
z =

Aζ
Bζ

.

To verify that each gζ,τ is a density, we first note that, since, for z 6= 0,
∫
X ψz = 0,

and so ∫
X
gζ,τ =

∫
X
ψ0 = 1.

Also, since ψ0 is constant and strictly positive and the supremum is taken over all
τ ∈ {−1, 1}Zζ , the condition that all gζ,τ ≥ 0 is equivalent to

sup
τ∈{−1,1}Zζ

B
−1/2
ζ

∥∥∥∥∥∥
∑
z∈Zζ

τzψz

∥∥∥∥∥∥
∞

= sup
τ∈{−1,1}Zζ

‖gζ,τ − ψ0‖∞ ≤ ‖ψ0‖∞.

For the Fourier basis, each ‖ψz‖∞ = 1,8 and so

sup
τ∈{−1,1}Zζ

∥∥∥∥∥∥
∑
z∈Zζ

τzψz

∥∥∥∥∥∥
∞

� sup
τ∈{−1,1}Zζ

∑
z∈Zζ

‖ψz‖∞ � |Zζ | = ζD.

Thus, we precisely need Bζ ∈ Ω(ζ2D), and it is sufficient, for example, that bz ∈
O(‖z‖−D/2).

8This is the only step in the proof that uses any properties specific to the Fourier basis.
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Finally, we show that

DTV

ψn0 , 1

2|Zζ |

∑
τ∈{−1,1}Zζ

gnζ,τ

 ≤ 1

2
(5.30)

(where hn : X n → [0,∞) denotes the joint likelihood of n IID samples). For any
particular τ ∈ {−1, 1}Zζ and x1, ..., xn ∈ X , the joint likelihood is

gnζ,τ (x1, ..., xn) =
n∏
i=1

1 + cζ
∑
z∈Zζ

τzψz(xi)


= 1 +

n∑
`=1

∑
i1,...,i`∈[n]

distinct

∑
j1,...,j`∈Zζ

∏̀
k=1

cζτjkφjk(xik)

= 1 +

n∑
`=1

c`ζ
∑

i1,...,i`∈[n]
distinct

∑
z1,...,z`∈Zζ

∏̀
k=1

τzkψzk(xik).

Thus, the likelihood of the uniform mixture over τ ∈ {−1, 1}Zζ is

1

2|Zζ |

∑
τ∈{−1,1}Zζ

gnζ,τ (x1, ..., xn)

= 1 +
1

2|Zζ |

∑
τ∈{−1,1}Zζ

n∑
`=1

c`ζ
∑

i1,...,i`∈[n]
distinct

∑
z1,...,z`∈Zζ

∏̀
k=1

τzkψzk(xik)

= 1 +

bn/2c∑
`=1

cζ2`
∑

i1,...,i2`∈[n]
distinct

∑
z1,...,z`∈Zζ

∏̀
k=1

ψzk(xi2k−1
)ψzk(xi2k),

where bac denotes the largest integer at most a ∈ [0,∞). This equality holds because,
within the sum over τ ∈ {−1, 1}Zζ , any term in which any τz appears an odd number
of times will cancel. The remaining terms each appear 2|Zζ | times. Thus, the total
variation distance is

DTV

ψn0 , 1

2|Zζ |

∑
τ∈{−1,1}Zζ

gnζ,τ

 =
1

2

∥∥∥∥∥∥∥ψn0 −
1

2|Zζ |

∑
τ∈{−1,1}Zζ

gnζ,τ

∥∥∥∥∥∥∥
1

=
1

2

∫
Xn

∣∣∣∣∣∣∣∣
bn/2c∑
`=1

c2`
ζ

∑
i1,...,i2`∈[n]

distinct

∑
z1,...,z`∈Zζ

∏̀
k=1

ψzk(xi2k−1
)ψzk(xi2k)

∣∣∣∣∣∣∣∣ d(x1, ..., xn)

≤ 1

2

bn/2c∑
`=1

c2`
ζ

∫
Xn

∣∣∣∣∣∣∣∣
∑

i1,...,i2`∈[n]
distinct

∑
z1,...,z`∈Zζ

∏̀
k=1

ψzk(xi2k−1
)ψzk(x2k)

∣∣∣∣∣∣∣∣ d(x1, ..., xn), (5.31)
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where we used the triangle inequality. By Jensen’s inequality (since X = [0, 1]),

∫
Xn

∣∣∣∣∣∣∣∣
∑

i1,...,i2`∈[n]
distinct

∑
z1,...,z`∈Zζ

∏̀
k=1

ψzk(xi2k−1
)ψzk(xi2k)

∣∣∣∣∣∣∣∣ d(x1, ..., xn)

≤

√√√√√√√∫Xn
 ∑
i1,...,i2`∈[n]

distinct

∑
z1,...,z`∈Zζ

∏̀
k=1

ψzk(xi2k−1
)ψzk(xi2k)


2

d(x1, ..., xn). (5.32)

Since {ψz}z∈Z is an orthogonal system inL2(X ), we can pull the summations outside
the square, so

∫
Xn

 ∑
i1,...,i2`∈[n]

distinct

∑
z1,...,z`∈Zζ

∏̀
k=1

ψzk(xi2k−1
)ψzk(xi2k)


2

d(x1, ..., xn)

=
∑

i1,...,i2`∈[n]
distinct

∑
z1,...,z`∈Zζ

∫
Xn

(∏̀
k=1

ψzk(xi2k−1
)ψzk(xi2k)

)2

d(x1, ..., xn)

=
∑

i1,...,i2`∈[n]
distinct

∑
z1,...,z`∈Zζ

1 =

(
n

2`

)
ζD` ≤ n2`ζD`

(`!)2
,

since (
n

2`

)
=

n!

(2`)!(n− 2k)!
≤ n2`

(2`)!
≤ n2`

(`!)2
.

Combining this with inequalities (5.31) and (5.32) gives

DTV

ψn0 , 1

2|Zζ |

∑
τ∈{−1,1}Zζ

gnζ,τ

 ≤ 1

2

bn/2c∑
`=1

(
nc2

ζζ
D/2
)`

`!
≤ exp

(
nc2

ζζ
D/2
)
− 1, (5.33)

where we used the fact that the exponential function is greater than any of its Tay-
lor approximations on [0,∞). The last expression in inequality (5.33) vanishes if
nc2

ζζ
D/2 → 0. Recalling now that we set cζ = B

−1/2
ζ , for some constant C > 0, the

desired bound (5.30) holds by choosing ζ satisfying

ζD

B2
ζ

= ζDc4
ζ ≤ Cn−2.

The unsmooth case (Bζ ∈ o
(
ζ2D

)
): Finally, we consider the ‘highly unsmooth’ case,

when Bζ ∈ o(ζ2D) In this case, we must modify the above proof to ensure that the
gζ,τ functions are all non-negative. In the Fourier case, we again wish to ensure

cζζ
D = cζ |Zζ | � cζ sup

τ∈{−1,1}Zζ

∥∥∥∥∥∥
∑
z∈Zζ

τzψz

∥∥∥∥∥∥
∞

≤ 1,
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but this is no longer guaranteed by setting cζ = B
−1/2
ζ ; instead, we use the smaller

value cζ = ζ−D. Clearly, we still have ‖gζ,τ‖2b ≤ 1. Now, however, we have a smaller
estimation error

inf
τ∈{−1,1}Zζ

‖gζ,τ‖2a − ‖ψ0‖2a = c2
ζ

∑
z∈Zζ

a−2
z =

Aζ
ζ2D

. (5.34)

Also, the information bound (5.33) now vanishes when nζ−3D/2 = nc2
ζζ
D/2 → 0,

so that, for some constant C > 0, the desired bound (5.30) holds by choosing ζ
satisfying

ζ ≤ Cn2/(3D).

Plugging this into equation (5.34) gives

inf
τ∈{−1,1}Zζ

‖gζ,τ‖2a − ‖ψ0‖2a �
An2/(3D)

n4/3
.

Finally, by Le Cam’s lemma, this implies the minimax rate

inf
Ŝ

sup
p,q∈Hb

E
[(
Ŝ − 〈p, q〉

)2
]
≥
(
An2/(3D)

n4/3

)2

.
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Chapter 6

Wasserstein Convergence of the
Empirical Measure

6.1 Introduction

The Wasserstein metric is an important measure of distance between probability dis-
tributions, with applications in machine learning, statistics, probability theory, and
data analysis. This chapter provides upper and lower bounds on statistical minimax
rates for the problem of estimating a probability distribution under Wasserstein loss,
using only metric properties, such as covering and packing numbers, of the sample
space, and weak moment assumptions on the probability distributions.

This chapter is a departure from the earlier work in this thesis in several ways.
The most obvious difference is that we are interested in the conventional nonpara-
metric problem of estimating an entire probability distribution, rather than simply
a real-valued functional thereof. Secondly, whereas most of the earlier work has
assumed the generating distribution is supported on a compact subset of Rd, in this
chapter, we dramatically generalize the sample space to an essentially arbitrary met-
ric space. Finally, we drop any assumption of absolute continuity of the data distri-
bution; instead, we will assume only that the distribution has some number of finite
moments.

To motivate this final consideration, note that, in general metric spaces, even as-
suming the existence of a base measure may be quite restrictive. Specifically, we
are most interested in situations where the distribution is supported on an (un-
known) subspace of much lower “intrinsic” dimension than the known ambient
space. Defining reasonable probability densities in such situations can become quite
difficult and requires assuming additional well-behaved structure (e.g., a manifold).
We take a simpler and more general approach, in which we discuss only probabil-
ity measures (potentially without densities) and measure complexity of the sample
space Ω in terms of covering and packing numbers, which are easy to define if Ω is any
totally bounded metric space. When Ω is not totally bounded, we assume that it can
be partitioned into a countable union of totally bounded sets (e.g., spherical shells
in Rd); by analogy to the notion of σ-finiteness in measure theory, we might call this
very mild property σ-boundedness.

6.2 Background

The Wasserstein metric is an important measure of distance between probability
distributions, based on the cost of transforming either distribution into the other
through mass transport, under a base metric on the sample space. Originating
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in the optimal transport literature,1 the Wasserstein metric has, owing to its intu-
itive and general nature, been utilized in such diverse areas as probability theory
and statistics, economics, image processing, text mining, robust optimization, and
physics (Villani, 2008; Fournier and Guillin, 2015; Esfahani and Kuhn, 2018; Gao
and Kleywegt, 2016).

In the analysis of image data, the Wasserstein metric has been used for various
tasks such as texture classification and face recognition (Sandler and Lindenbaum,
2011), reflectance interpolation, color transfer, and geometry processing (Solomon,
De Goes, Peyré, Cuturi, Butscher, Nguyen, Du, and Guibas, 2015), image retrieval (Rub-
ner, Tomasi, and Guibas, 2000), and image segmentation (Ni, Bresson, Chan, and
Esedoglu, 2009), and, in the analysis of text data, for tasks such as document classifi-
cation (Kusner, Sun, Kolkin, and Weinberger, 2015) and machine translation (Zhang,
Liu, Luan, Sun, Izuha, and Hao, 2016).

In contrast to a number of other popular notions of dissimilarity between proba-
bility distributions, such asLp distances or Kullback-Leibler and other f -divergences (Mo-
rimoto, 1963; Csiszár, 1964; Ali and Silvey, 1966), which require distributions to
be absolutely continuous with respect to each other or to a base measure, Wasser-
stein distance is well-defined between any pair of probability distributions over a
sample space equipped with a metric.2 As a particularly important consequence,
Wasserstein distances between discrete (e.g., empirical) distributions and continu-
ous distributions are well-defined, finite, and informative (e.g., can decay to 0 as the
distributions become more similar).

Partly for this reason, many central limit theorems and related approximation re-
sults (Rüschendorf, 1985; Johnson and Samworth, 2005; Chatterjee, 2008; Rio, 2009;
Rio, 2011; Chen, Goldstein, and Shao, 2010; Reitzner and Schulte, 2013) are expressed
using Wasserstein distances. Within machine learning and statistics, this same prop-
erty motivates a class of so-called minimum Wasserstein distance estimates (Barrio,
Giné, and Matrán, 1999; Barrio, Giné, and Matrán, 2003; Bassetti, Bodini, and Regazz-
ini, 2006; Bernton, Jacob, Gerber, and Robert, 2017) of distributions, ranging from
exponential distributions (Baíllo, Cárcamo, and Getman, 2016) to more exotic mod-
els such as restricted Boltzmann machines (RBMs) (Montavon, Müller, and Cuturi,
2016) and generative adversarial networks (GANs) (Arjovsky, Chintala, and Bot-
tou, 2017). This class of estimators also includes k-means and k-medians, where
the hypothesis class is taken to be discrete distributions supported on at most k
points (Pollard, 1982); more flexible algorithms such as hierarchical k-means (Ho,
Nguyen, Yurochkin, Bui, Huynh, and Phung, 2017) and k-flats (Tseng, 2000) can
also be expressed in this way, using a more elaborate hypothesis classes. PCA can
also be expressed and generalized to manifolds using Wasserstein distance mini-
mization (Boissard, Le Gouic, and Loubes, 2015). These estimators are conceptually
equivalent to empirical risk minimization, leveraging the fact that Wasserstein dis-
tances between the empirical distribution and distributions in the relevant hypothe-
sis class are well-behaved. Moreover, these estimates often perform well in practice
because they are free of both tuning parameters and strong distributional assump-
tions.

For many of the above applications, it is important to understand how quickly
the empirical distribution converges to the true distribution in Wasserstein distance,

1The Wasserstein metric has been variously attributed to Monge, Kantorovich, Rubinstein, Gini,
Mallows, and others; see Chapter 3 of Villani (2008) for detailed history.

2Hence, we use “distribution estimation” in this section, rather than the more common “density
estimation”.
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and whether there exist distribution estimators that converge more quickly. For ex-
ample, Canas and Rosasco (2012) use bounds on Wasserstein convergence to prove
learning bounds for k-means, while Arora, Ge, Liang, Ma, and Zhang (2017) used
the slow rate of convergence in Wasserstein distance in certain cases to argue that
GANs based on Wasserstein distances fail to generalize with fewer than exponen-
tially many samples in the dimension.

To this end, the main contribution of this section is to identify, in a wide variety
of settings, the minimax convergence rate for the problem of estimating a distri-
bution using Wasserstein distance as a loss function. Our setting is very general,
relying only on metric properties of the support of the distribution and the number
of finite moments the distribution has; some diverse examples to which our results
apply are given in Section 6.5. Specifically, we assume only that the distribution is
has some number of finite moments in a given metric. We then prove bounds on
the minimax convergence rates of distribution estimation, utilizing covering num-
bers of the sample space for upper bounds and packing numbers for lower bounds.
It may at first be surprising that positive results can be obtained under such mild
assumptions; this highlights that the Wasserstein metric is quite a weak metric (see
our Lemma 42 and the subsequent remark for discussion of this). Moreover, our
results imply that, without further assumptions on the population distribution, the
empirical distribution is typically minimax rate-optimal. Note that, while there has
been previous work on upper bounds (discussed in Section 6.4), this section is the
first to study minimax lower bounds for this problem.

Organization: The remainder of this section is organized as follows. Section 6.3
provides notation required to formally state both the problem of interest and our
results, while Section 6.4 reviews previous work studying convergence of distribu-
tions in Wasserstein distance. Sections 6.4.1 and 6.4.2 respectively contain our main
upper and lower bound results. Since the proofs of the upper bounds, are fairly
long, Sections 6.7 and 6.8 provide high-level sketches of the proofs, followed by de-
tailed proofs in Section 6.9. The lower bound is proven in Section 6.10. Finally, in
Section 6.5, we apply our upper and lower bounds to identify minimax convergence
rates in a number of concrete examples. Section 6.6 concludes with a summary of
our contributions and suggested avenues for future work.

6.3 Notation and Problem Setting

For any positive integer n ∈ N, [n] = {1, 2, ..., n} denotes the set of the first n pos-
itive integers. For sequences {an}n∈N and {bn}n∈N of non-negative reals, an . bn
and, equivalently bn & an, indicate the existence of a constant C > 0 such that
lim supn→∞

an
bn
≤ C. an � bn indicates an . bn . an.

6.3.1 Problem Setting

For the remainder of this section, fix a metric space (Ω, ρ), over which Σ denotes the
Borel σ-algebra, and let P denote the family of all Borel probability distributions on
Ω. The main object of study in this section is the Wasserstein distance on P , defined
as follows:

Definition 32 (r-Wasserstein Distance). Given two Borel probability distributions P
and Q over Ω and r ∈ [1,∞), the r-Wasserstein distance Wr(P,Q) ∈ [0,∞] between P
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and Q is defined by

Wr(P,Q) := inf
µ∈Π(P,Q)

(
E

(X,Y )∼µ
[ρr (X,Y )]

)1/r

,

where Π(P,Q) denotes all couplings between X ∼ P and Y ∼ Q; that is,

Π(P,Q) :=
{
µ : Σ2 → [0, 1]

∣∣ for all A ∈ Σ, µ(A× Ω) = P (A) and µ(Ω×A) = Q(A)
}
,

is the set of joint probability measures over Ω× Ω with marginals P and Q.

Intuitively, Wr(P,Q) quantifies the r-weighted total cost of transforming mass
distributed according to P to be distributed according toQ, where the cost of moving
a unit mass from x ∈ Ω to y ∈ Ω is ρ(x, y). Wr(P,Q) is sometimes defined in terms
of equivalent (e.g., dual) formulations; these formulations will not be needed here,
although they will become central in Chapter 7. Wr it is symmetric in its arguments
and satisfies the triangle inequality (Clement and Desch, 2008), and, for all P ∈ P ,
Wr(P, P ) = 0. Thus, Wr is always a pseudometric. Moreover, it is a proper metric
(i.e., Wr(P,Q) = 0⇒ P = Q) if and only if ρ is as well.

This section studies the following problem:
Formal Problem Statement: Suppose (Ω, ρ) is a known metric space. Suppose

P is an unknown Borel probability distribution on Ω, from which we observe n

IID samples X1, ..., Xn
IID∼ P . We are interested in studying the minimax rates

at which P can be estimated from X1, ..., Xn, in terms of the (rth power of the) r-
Wasserstein loss. Specifically, we are interested in deriving finite-sample upper and
lower bounds, in terms of only properties of the space (Ω, ρ), on the quantity

inf
P̂

sup
P∈P

E
X1,...,Xn

IID∼ P

[
W r
r

(
P, P̂ (X1, ..., Xn)

)]
, (6.1)

where the infimum is taken over all estimators P̂ (i.e., (potentially randomized)
functions P̂ : Ωn → P of the data). In the sequel, we suppress the dependence
of P̂ = P̂ (X1, ..., Xn) in the notation.

In particular, our upper bounds on (6.1) will utilize, as the distribution estimator,
the simple empirical distribution

P̂ :=
1

n

n∑
i=1

δXi ,

where δx denotes a Dirac delta mass at x. Our results will imply, therefore, that the
empirical distribution is rate-optimal, under the types of assumptions (described in
the next section) that we consider.

6.3.2 Definitions for Stating our Results

Here, we give notation and definitions needed to state our main results in Sec-
tions 6.4.1 and 6.4.2.
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Let 2Ω denote the power set of Ω. Let S ⊆ 22Ω
denote the family of all Borel

partitions of Ω:

S :=

{
S ⊆ Σ : Ω ⊆

⋃
S∈S

S and ∀S, T ∈ S, S ∩ T = ∅

}
.

We now define some metric notions that will later be useful for bounding Wasser-
stein distances:

Definition 33 (Diameter and Separation of a Set, Resolution of a Partition). For any
set S ⊆ Ω, the diameter Diam(S) of S is defined by Diam(S) := supx,y∈S ρ(x, y), and
the separation Sep(S) of S is defined by Sep(S) := infx 6=y∈S ρ(x, y). If S ∈ S is a
partition of Ω, then the resolution Res(S) of S defined by Res(S) := supS∈S Diam(S)
is the largest diameter of any set in S.

We now define the covering and packing number of a metric space, which are
classic and widely used measures of the size or complexity of a metric space (Dudley,
1967; Haussler, 1995; Zhou, 2002; Zhang, 2002). Our main convergence results will
be stated in terms of these quantities, as well as the packing radius, which acts,
approximately, as the inverse of the packing number.

Definition 34 (Covering Number, Packing Number, and Packing Radius of a Metric
Space). The covering number N : (0,∞)→ N of (Ω, ρ) is defined for all ε > 0 by

N(ε) := min {|S| : S ∈ S and Res(S) ≤ ε} .

The packing number M : (0,∞)→ N of (Ω, ρ) is defined for all ε > 0 by

M(ε) := max {|S| : S ⊆ Ω and Sep(S) ≥ ε} .

Finally, the packing radius R : N→ [0,∞] is defined for all n ∈ N by

R(n) := sup{Sep(S) : S ⊆ Ω and |S| ≥ n}.

Sometimes, we use the covering or packing number of a metric space, say (Θ, τ),
other than (Ω, ρ); in such cases, we write N(Θ; τ ; ε) or M(Θ; τ ; ε) rather than N(ε) or
M(ε), respectively. For specific ε > 0, we will also refer to N(Θ; τ ; ε) as the ε-covering
number of (Θ, τ).

Remark 35. The covering and packing numbers of a metric space are closely related.
In particular, for any ε > 0, we always have

M(ε) ≤ N(ε) ≤M(ε/2). (6.2)

The packing number and packing radius also have a close approximate inverse rela-
tionship. In particular, for any ε > 0 and n ∈ N, we always have

R(M(ε)) ≥ ε and M(R(n)) ≥ n. (6.3)

However, it is possible that R(M(ε)) > ε or M(R(n)) > n.

Finally, when we consider unbounded metric spaces, we will require some sort of
concentration conditions on the probability distributions of interest, to obtain useful
results. Specifically, we an appropriately generalized version of the moment of the
distribution:
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Remark 36. We defined the covering number slightly differently from usual (using
partitions rather than covers). However, the given definition is equivalent to the
usual definition, since (a) any partition is itself a cover (i.e., a set C ⊆ 2Ω such that
Ω ⊆

⋃
C∈C C), and (b), for any countable cover C := {C1, C2, ...} ⊆ 2Ω, there exists

a partition S ∈ S with |S| ≤ |C| and each Si ⊆ Ci, defined recursively by Si :=
Ci\

⋃i−1
j=1 Si. S is often called the disjointification of C.

Definition 37 (Metric Moments of a Probability Distribution). For any ` ∈ [0,∞],
probability measure P ∈ P , and x ∈ Ω, the `th metric moment m`,x(P ) of P around x
is defined by

m`,x(P ) :=

(
E

Y∼P

[
(ρ(x, Y ))`

])1/`

∈ [0,∞],

using the appropriate limit if ` = ∞. The chosen reference point x only affects
constant factors since,

for all x, x′ ∈ Ω,
∣∣∣m`

`,x(P )−m`
`,x′(P )

∣∣∣ ≤ (ρ(x, x′)
)`
.

Note that, if Ω has linear structure with respect to which ρ is translation-invariant
(e.g., if (Ω, ρ) is a Fréchet space), we can state our results more simply in terms of
m`(P ) := infx∈Ωm`,x(P ). As an example, if Ω = R and ρ(x, y) = |x− y|, then m2(P )
is precisely the standard deviation of P .

6.4 Related Work

A long line of work (Dudley, 1969; Ajtai, Komlós, and Tusnády, 1984; Canas and
Rosasco, 2012; Dereich, Scheutzow, and Schottstedt, 2013; Boissard and Le Gouic,
2014; Fournier and Guillin, 2015; Weed and Bach, 2017; Lei, 2018) has studied the
rate of convergence of the empirical distribution to the population distribution in
Wasserstein distance. In terms of upper bounds, the most general and tight upper
bounds are the recent works of Weed and Bach (2017) and Lei (2018). As we describe
below, while these two papers overlap significantly, neither supersedes the other,
and our upper bound combines the key strengths of those in Weed and Bach (2017)
and Lei (2018).

The results of Weed and Bach (2017) are expressed in terms of a particular notion
of dimension, which they call the Wasserstein dimension s, since they derive conver-
gence rates of order n−r/s (matching the n−r/D rate achieved on the unit cube [0, 1]D).
The definition of s is complex (e.g., it depends on the sample size n), but Weed and
Bach (2017) show that, in many cases, s converges to certain common definitions of
the intrinsic dimension of the support of the distribution. Our work overcomes three
main limitations of Weed and Bach (2017):

1. The upper bounds of Weed and Bach (2017) apply only to totally bounded met-
ric spaces. In contrast, our upper bounds permit unbounded metric spaces un-
der the assumption that the distribution P has some finite moment m`(P ) <∞.
The results of Weed and Bach (2017) correspond to the special case ` =∞.

2. Their main upper bound (their Proposition 10) only holds when s > 2r, with
constant factors diverging to infinity as s ↓ 2r. Hence, their rates are loose when
r is large or when the data have low intrinsic dimension. In contrast, our upper
bound is tight even when s ≤ 2r.

3. As we discuss in our Example 8, the upper bound of Weed and Bach (2017)
becomes loose as the Wasserstein dimension s approaches∞, limiting its utility
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in infinite-dimensional function spaces. In contrast, we show that our upper
and lower bounds match for several standard function spaces.

Intuitively, we find that the finite-sample bounds of Weed and Bach (2017) are tight
when the intrinsic dimension of the data lies in an interval [a, b] with 2r < a < b <
∞, but they can be loose outside this range. In contrast, we find our results give
tight rates for a larger class of problems.

On the other hand, Lei (2018) focuses on the case where Ω is a (potentially un-
bounded and infinite-dimensional) Banach space, under moment assumptions on
the distributions. Thus, while the results of Lei (2018) cover interesting cases such as
infinite-dimensional Gaussian processes, they do not demonstrate that convergence
rates improve when the intrinsic dimension of the support of P is smaller than that
of Ω (unless this support lies within a linear subspace of Ω). As a simple example, if
the distribution is in fact supported on a finite set of k linearly independent points,
the bound of Lei (2018) implies only a convergence rate, whereas we give a bound of
orderO(

√
k/n). Although we do not delve into this here, our results (unlike those of

Lei (2018)) should also benefit from the multi-scale behavior discussed in Section 5
of Weed and Bach (2017); namely, much faster convergence rates are often observed
for small n than for large n. This may help explain why algorithms such as func-
tional k-means (García, García-Ródenas, and Gómez, 2015) work in practice, even
though the results of Lei (2018) imply only a slow convergence rate of O ((log n)−p),
for some constant p > 0, in this case.

Under similarly general conditions, Sriperumbudur, Fukumizu, Gretton, Schölkopf,
and Lanckriet (2010a) and Sriperumbudur, Fukumizu, Gretton, Schölkopf, and Lanck-
riet (2012) have studied the related problem of estimating the Wasserstein distance
between two unknown distributions given samples from those two distributions.
Since one can estimate Wasserstein distances by plugging in empirical distributions,
our upper bounds imply upper bounds for Wasserstein distance estimation. These
bounds are tighter, in several cases, than those of Sriperumbudur, Fukumizu, Gret-
ton, Schölkopf, and Lanckriet (2010a) and Sriperumbudur, Fukumizu, Gretton, Schölkopf,
and Lanckriet (2012); for example, when X = [0, 1]D is the Euclidean unit cube, we
give a rate of n−1/D, whereas they give a rate of n−

1
D+1 . Minimax rates for this prob-

lem are currently unknown, and it is presently unclear to us under what conditions
recent results on estimation ofL1 distances between discrete distributions (Jiao, Han,
and Weissman, 2017) might imply an improved rate as fast as (n log n)−1/D for esti-
mation of Wasserstein distance.

To the best of our knowledge, minimax lower bounds for distribution estima-
tion under Wasserstein loss remain unstudied, except in the very specific case when
Ω = [0, 1]D is the Euclidean unit cube and r = 1 (Liang, 2017). As noted above,
most previous works have focused on studying convergence rate of the empirical
distribution to the true distribution in Wasserstein distance. For this rate, several
lower bounds have been established, matching known upper bounds in many cases.
However, many distribution estimators besides the empirical distribution can be
considered. For example, it is tempting (especially given the infinite dimensionality
of the distribution to be estimated) to try to reduce variance by techniques such as
smoothing or importance sampling (Bucklew, 2013). Our lower bound results, given
in Section 6.4.2, imply that the empirical distribution is already minimax optimal, up
to constant factors, in many cases.

6.4.1 Upper Bounds

We begin with our main upper bound result:
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Theorem 38 (Upper Bound). Let x0 ∈ Ω and suppose m`,x0(P ) ∈ [1,∞). Let J ∈ N
and ε > 0. For each k ∈ N, define B2k(x0) :=

{
y ∈ Ω : 2k ≤ ρ(x0, x) < 2k+1

}
. Then, for

` ∈ (r,∞)\{2r},

E [W r
r (P, Pn)] ≤ C`,rm`

`,x0
(P )

n r−`` + 2−2Jr +
∑
k∈N

J∑
j=0

2kr−2jr min

{
2−k`,

√
N (B2k(x0), 2k−2j)

n

} ,

(6.4)
where C`,r is a constant depending only on ` and r. Moreover, when ` = 2r, the bound (6.4)
holds with n

r−`
` replaced by logn√

n
.

The upper bound (6.4) can be thought of as having two main terms: a “tail” term
of order n

r−`
` and a “dimensionality” term, which depends on how the covering

numbers N(Bw(x0), η) of balls centered around x0 scale with w and η, as well as on
two free parameters, J and ε, which can be chosen (depending on the covering num-
ber N ) to minimize the overall bound. Each of these terms dominates in different
settings, and, as discussed below, each matches, up to constant factors, a minimax
lower bound on the error of estimating P .

The proof of Theorem 38 involves two main steps, which we sketch here:
Step 1: First, consider the totally bounded case, in which ∆ := Diam(Ω) and

N(Ω, ε) are finite for any ε > 0. In this setting, one can prove a bound (for any
J ∈ N) of order

∆r2−Jr +
∆r

√
n

J∑
j=1

2−2jr
√
N(Ω,∆2−2j); (6.5)

this is essentially the “multi-resolution bound” of Weed and Bach (2017), wherein
the parameter J , controls the number of resolutions considered can be chosen freely
to minimize the bound (typically, J → ∞ as n → ∞, at a rate depending on how
N(Ω, ε) scales with ε).

Step 2: We now reduce the case of unbounded Ω to the totally bounded case by
partitioning Ω into a sequence of “thick spherical shells” B2k(x0), of inner radius 2k

and outer radius 2k+1, centered around x0, and boundingW r
r (P, P̂ ) by a decomposi-

tion over these shells. For small k, the covering numbersB2k(x0) are not too big, and
hence we can apply the bound (6.5), leading to the “dimensionality” term in (6.4).
For large k, Markov’s inequality and the bounded moment assumption together im-
ply that the probabilities P (B2k(x0) and P̂ (B2k(x0) decay rapidly; this small amount
of mass, which may need to be moved a relatively large distance, leads to the C1n

r−`
`

“tail” term in (6.4). This general strategy of partitioning Ω into a nested sequence
of bounded subsets is similar to that used by Fournier and Guillin (2015) and Lei
(2018). However, both of these works relied on the assumption that (Ω, ρ) has a
linear (Banach space) structure, which enabled them to use a bound of the form
N(wB,wε) ≤ N(B, ε), where B ⊆ Ω is totally bounded and wB = {wx : x ∈ B} for
scalar w > 0. This leads to a simpler upper bound, in which the terms depending on
j and k can be factored, but, as we discuss in Section 6.5, requiring Ω to have linear
structure can be limiting.
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6.4.2 Lower Bounds

We now turn to providing lower bounds on minimax risk of density estimation in
Wasserstein distance; that is, the quantity

inf
P̂ :Ωn→P

sup
P∈P

E
Xn

1
IID∼ P

[
W r
r

(
P, P̂

)]
, (6.6)

where the infimum is over all estimators P̂ of P (i.e., all (potentially randomized)
functions P̂ : Ωn → P)).

We provide two results: one in terms of packing numbers, for totally bounded
metric spaces, and one in terms of the tails of the distribution. Since distributions
with totally bounded support necessarily satisfy moment bounds of arbitrary or-
der, in the general unbounded setting with moment constraints, one can apply the
maximum of the two bounds.

Theorem 39 (Minimax Lower Bound in Terms of Packing Radius). Let (Ω, ρ) be a
metric space, on which P is the set of Borel probability measures. Then,

M(r,P) ≥ cr sup
k∈[32n]

Rr(Ω, k)

√
k − 1

n
,

where cr = 3 log 2
2r+12 depends only on r.

Theorem 40 (Minimax Lower Bound for Heavy-Tailed Distributions). Suppose r, `, µ >
0 are constants, and fix x0 ∈ Ω. Let P`,x0(µ) denote the family of distributions P on Ω with
`th moment µ`,x0(P ) ≤ µ around x0 at most µ. Let n ≥ 3µ

2 and assume there exists x1 ∈ Ω

such that ρ(x0, x1) = n1/`. Then,

M(r,P`,x0(µ)) ≥ cµn
r−`
` ,

where cµ := min{µ,2/3}
24 is constant in n.

Recalling that the packing radius R is closely related to the covering number N
(via Equations (6.2) and (6.3)), one can see that these two bounds correspond to the
two “nonparametric” terms of the upper bound (6.4). Specifically, it is easy to see
that the rate in Theorem 40 matches the “tail” term in (6.4), while it is somewhat
less obvious that the simple-looking rate in Theorem 39 matches, in many cases of
interest, the apparently more complex “dimension” term of (6.4). However, as we
show in the next section, despite their simplicity, these bounds are indeed tight in
many diverse cases of interest.

6.5 Example Applications

Our theorems in the previous sections are quite abstract and have many tuning pa-
rameters. Thus, we conclude by exploring applications of our results to cases of
interest. In each of the following examples, P is an unknown Borel probability mea-
sure over the specified Ω, from which we observe n IID samples. For upper bounds,
P̂ denotes the empirical distribution (6.3.1) of these samples.

Example 4 (Finite Space). Consider the case where Ω is a finite set, over which ρ is the
discrete metric given, for some δ > 0, by ρ(x, y) = δ1{x=y}, for all x, y ∈ Ω. Then, for
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any ε ∈ (0, δ), the covering number is N(ε) = |Ω|. Thus, setting K = 1 and sending
ε1 → 0 in Theorem 38 gives

E
[
W r
r (P, P̂ )

]
≤ δr

√
|Ω| − 1

n
.

On the other hand, R(|Ω|) = δ, and so, setting k = |Ω| in Theorem 39 yields

inf
P̂

sup
P∈P

E
X1,...,Xn

IID∼ P

[
W r
r (P, P̂ )

]
& δr

√
|Ω| − 1

n
.

Example 5 (RD, Euclidean Metric). Consider the case where Ω = RD is the unit cube
and ρ is the Euclidean metric. Assuming ` > r, using the fact that N (Bk, ρ, ε) ≤(

3wk
ε

)D
(Pollard, 1990) and plugging εj = 2−2j and wk = 2k into Theorem 38 gives

(after a straightforward but very tedious calculation) a constant CD,r,` depending
only on D, r, and ` such that

E
[
W r
r (P, P̂ )

]
≤ CD,`,rm`

`(P )

n `−r` + 2−2Jr +

J∑
j=1

2(D−2r)j

 . (6.7)

Of these three terms, the first depends only on the number ` of finite moments P
is assumed to have and the order r of the Wasserstein distance, whereas the second
and third terms depend on choosing the parameter J . The optimal choice of J scales
with the sample size n at a rate depending on the quantity D − 2r. Specifically, if
D = 2r, then setting J � 1

4r log2 n gives a rate of E
[
W r
r (P, P̂ )

]
. n

`−r
` + n−1/2 log n.

If D 6= 2r, then (6.7) reduces to

E
[
W r
r (P, P̂ )

]
≤ CD,`,rm`

`(P )

(
n
`−r
` + 2−2Jr +

2(D−2r)J − 1

2D−2r − 1

)
.

Then, if D > 2r, sending J → ∞ gives E
[
W r
r (P, P̂ )

]
. n

`−r
` + n−1/2. Finally, if

D < 2r, then setting J � 1
2D log n gives E

[
W r
r (P, P̂ )

]
. n

`−r
` + n−

r
D . To summarize

E
[
W r
r (P, P̂ )

]
. n

`−r
` +


n−1/2 if 2r > D

n−1/2 log n if 2r = D

n−r/D if 2r < D

(reproducing Theorem 1 of (Fournier and Guillin, 2015)). On the other hand, it is
easy to check that the packing radius R satisfies R(n) ≥ n−1/D and R(2) ≥

√
D.

Thus, Theorem 39 with k = n and k = 2 yields

inf
P̂

sup
P∈P

E
[
W r
r (P̂ , P )

]
& max

{
(n+ 1)−r/D, Dr/2n−1/2

}
.

Together, these bounds give the following minimax rates for density estimation in
Wasserstein loss:

inf
P̂

sup
P∈P

E
[
W r
r (P̂ , P )

]
�
{
n−1/2 if ` > 2r > D

n−r/D if 2r < D, ` > Dr
D−r
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When 2r = D and ` > 2r, our upper and lower bounds are separated by a factor
of log n. The main result of (Ajtai, Komlós, and Tusnády, 1984) implies that, for the
caseD = 2 and r = 1, the empirical distribution converges as n−1/2 log n, suggesting
that the log n factor in our upper bound may be tight. Further generalization of
Theorem 39 is needed to give lower bounds when both D, ` ≤ 2r or when D > 2r
and ` ≤ Dr

D−r .

The next example demonstrates how the rate of convergence in Wasserstein met-
ric depends on properties of the metric space (Ω, ρ) at both large and small scales.
Specifically, if we discretize Ω, then the phase transition at 2r = D disappears.

Example 6 (Unbounded Grid). Suppose Ω = ZD is a D-dimensional grid of integers
and ρ is `∞-metric (given by ρ(x, y) = maxj∈[D] |xj − yj |). Since ZD ⊆ RD and
the `∞ and Euclidean metrics are topologically equivalent, the upper bounds from
Example 5 clearly apply, up to a factor of

√
D. However, we also have the fact that,

whenever ε < 1, N(Bk, ρ, ε) = wDk . Therefore, setting J = 0, ε0 = 0, and wk = 2k in
Theorem 38 gives, for a constant CD,`,r depending only on D, `, and r,

E
[
W r
r (P, P̂ )

]
≤ CD,`,rm`

`(P )

(
n
`−r
` +

∑
k∈N

√
2(D−`)k

n

)
.

When ` > D, this reduces to E
[
W r
r (P, P̂ )

]
. n

`−r
` + n−1/2, giving a tighter rate than

in Example 5 when 2r ≤ D < `. To the best of our knowledge, no prior results in the
literature imply this fact.

Example 7 (Latent Variable Models, Manifolds). This example demonstrates that the
convergence rate of the empirical distribution in Wasserstein distance improves in
the presence of additional structure in the data. Importantly, no knowledge of this
structure is needed to obtain this accelerated convergence, since it is inherent to the
empirical distribution itself.

Suppose that there exist a metric space (Z, ρZ), a L-Lipschitz mapping φ : Y →
Ω, and a probability distribution Q on Z such that P is the pushforward on Q under
φ; i.e., for any A ⊆ Ω, P (A) = Q(f−1(A)), where φ−1(A) denotes the pre-image of
A under φ. This setting is inherent, for example, in many latent variable models.
When Z ⊆ Rd and Ω ⊆ RD with d < D, this generalizes the assumption, popular
in high-dimensional nonparametric statistics, that the data lie on a low-dimensional
manifold.

In this setting, one can easily bound moments of P and covering numbers in Ω
in terms of those of Q and in Z , respectively. Specifically,

(a) for any z ∈ Z , ` > 0, m`,φ(z)(P ) ≤ Lm`,z(Q), and
(b) for any E ⊆ Ω, ε > 0, N(E, ρ, ε) ≤ N(φ−1(E), ρZ , ε/L).

This allows us to bound convergence rates over Ω in terms of moment bounds on
Q and covering number bounds on (Z, ρZ). For example, if Z ⊆ Rd and ρZ is the
Euclidean metric, then, for any bounded E ⊆ Z , we necessarily have N(E, ρZ , ε) ∈
O
(
ε−d
)

as ε → 0. If Ω ⊆ RD with d < D, then, via analysis similar to that in the
Euclidean case above, Theorem 38 gives a convergence rate of n−1/2n

r−`
` + n−r/d,

potentially much faster than the n−1/2n
r−`
` + n−r/D minimax lower bound that can

be derived without assuming this low-dimensional structure.

Finally, we consider distributions over an infinite dimensional space of smooth
functions.
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Example 8 (Hölder Ball, L∞ Metric). Suppose that, for some α ∈ (0, 1],

Ω :=
{
f [0, 1]D → [−1, 1]

∣∣ ∀x, y ∈ [0, 1]D, |f(x)− f(y)| ≤ ‖x− y‖α2
}

is the class of unit α-Hölder functions on the unit cube and ρ is the L∞-metric given
by

ρ(f, g) = sup
x∈[0,1]D

|f(x)− g(x)|, for all f, g ∈ Ω.

The covering and packing numbers of (Ω, ρ) are well-known to be of order exp
(
ε−D/α

)
(DeVore and Lorentz, 1993); specifically, there exist positive constants 0 < c1 < c2

such that, for all ε ∈ (0, 1),

c1 exp
(
ε−D/α

)
≤ N(ε) ≤M(ε) ≤ c2 exp

(
ε−D/α

)
.

Since Diam(Ω) = 2, applying Theorem 38 with K = 1 and

ε1 = (2 log n− (αr/D) log log n)−
αr
D gives E

[
W r
r (P, P̂ )

]
. (log n)

−αr
D .

Conversely, Inequality (6.3) implies R(n) ≥ (log(n/c1))
−α
D , and so setting k = n in

Theorem 39 gives

inf
P̂

sup
P∈P

E
X1,...,Xn

IID∼ P

[
W r
r (P, P̂ )

]
&

(
1

log(n/c1)

)αr
D

,

showing that distribution estimation over (P,W r
r ) has the extremely slow minimax

rate (log n)
−αr
D . Although we considered only α ∈ (0, 1] (due to the notational com-

plexity of defining higher-order Hölder spaces), analogous rates hold for all α > 0.
Also, since our rates depend only on covering and packing numbers of Ω, identical
rates can be derived for related Sobolev and Besov classes. Note that the Wasserstein
dimension used in the prior work (Weed and Bach, 2017) is of order D

α log n, and so
their upper bound (their Proposition 10) gives a rate of n−

αr
D logn = exp

(
−αr
D

)
, which

fails to converge as n→∞.

One might wonder why we are interested in studying Wasserstein convergence
of distributions over spaces of smooth functions, as in Example 8. Our motivation
comes from the historical use of smooth function spaces have been widely used for
modeling images and other complex naturalistic signals (Mallat, 1999; Peyré, 2011;
Sadhanala, Wang, and Tibshirani, 2016). Empirical breakthroughs have recently
been made in generative modeling, particularly of images, based on the principle
of minimizing Wasserstein distance between the empirical distribution and a large
class of models encoded by a deep neural network (Montavon, Müller, and Cuturi,
2016; Arjovsky, Chintala, and Bottou, 2017; Gulrajani, Ahmed, Arjovsky, Dumoulin,
and Courville, 2017).

However, little is known about theoretical properties of these methods; while
there has been some work studying the optimization landscape of such models (Na-
garajan and Kolter, 2017; Liang and Stokes, 2018), we know of far less work explor-
ing their statistical properties. Given the extremely slow minimax convergence rate
we derived above, it must be the case that the class of distributions encoded by such
models is far smaller or sparser than P . An important avenue for further work is
thus to explicitly identify stronger assumptions that can be made on distributions
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over interesting classes of signals, such as images, to bridge the gap between empir-
ical performance and our theoretical understanding.

Example 9 (Expectations of Lipschitz Functions & Monte Carlo Integration). A fun-
damental statistical problem is to estimate an expectation EX∼P [f(X)] of some func-
tion f with respect to a distribution P . A classical duality result of Kantorovich (Kan-
torovich, 1942) implies that

W1(P,Q) = sup
f∈C1(Ω)

∣∣∣∣ E
X∼P

[f(X)]− E
Y∼Q

[f(Y )]

∣∣∣∣ , where C1(Ω) :=

{
f : Ω→ R : sup

x6=y∈Ω

|f(x)− f(y)|
ρ(x, y)

≤ 1

}

denotes the class of 1-Lipschitz functions on (Ω, ρ). Our upper bound (Theorem 38)
thus implies bounds, uniformly over 1-Lipschitz functions f , on the expected error
of estimating an expectation EX∼P [f(X)] by the empirical estimate 1

n

∑n
i=1 f(Xi)

based on Xn
1
IID∼ P . Moreover, our lower bounds (Theorems 39 and 40) imply that

this empirical estimate is minimax rate-optimal over P satisfying only bounded mo-
ment assumptions.

As Weed and Bach (2017) noted, this has consequences for Monte Carlo integra-
tion, a common approach to numerical integration in which an integral

∫
Ω f dλ of a

function f with respect to a measure λ is estimated based on n IID samples from a
probability distribution P proportional to λ; Monte Carlo integration is useful even
when f and λ are known analytically, since numerically computing this integral can
be challenging, especially in high dimensions or when the supports of f and λ are
unbounded. In this context, the sample size n required to obtain a desired accuracy
directly determines the computational demand of the integration scheme.

Our upper bounds allow one to generalize the upper bound of Weed and Bach
(2017) for Monte Carlo integration (their Proposition 21) to the important case of in-
tegrals over unbounded domains Ω, and, moreover, our lower bounds imply that,
at least without further knowledge of f ∈ C1(Ω) and P ∈ P`,x0(µ), the empirical es-
timate above is rate-optimal among Monte Carlo estimates (i.e., among functions of
Xn

1 ). Although improved estimates can be constructed for specific f , Ω, and λ, these
worst-case results are useful when either f or λ is too complex to model analytically,
as often happens, for example, in Bayesian inference problems (Geweke, 1989).

6.6 Conclusion

In this section, we derived upper and lower bounds for distribution estimation un-
der Wasserstein loss. Our upper bounds generalize prior results and are tighter in
certain cases, while our lower bounds are, to the best of our knowledge, the first min-
imax lower bounds for this problem. We also provided several concrete examples in
which our bounds imply novel convergence rates.

6.6.1 Future Work

We studied minimax rates over the very large entire class P of all distributions with
some number of finite moments. It would be useful to understand how minimax
rates improve when additional assumptions, such as smoothness, are made (see, e.g.,
Liang (2017) for somewhat improved upper bounds under smoothness assumptions
when (Ω, ρ) is the Euclidean unit cube). Given the slow convergence rates we found
overP in many cases, studying minimax rates under stronger assumptions may help
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to explain the relatively favorable empirical performance of popular distribution es-
timators based on empirical risk minimization in Wasserstein loss. Moreover, while
rates over all of P are of interest only for very weak metrics such as the Wasserstein
distance (as stronger metrics may be infinite or undefined), studying minimax rates
under additional assumptions will allow for a better understanding of the Wasser-
stein metric in relation to other commonly used metrics.

6.7 Preliminary Lemmas and Proof Sketch of Theorem 38

In this section, we outline the proof of Theorem 38, our upper bound for the case
of totally bounded metric spaces. The proof of the more general Theorem 38 for
unbounded metric spaces, which is given in the next section, builds on this.

We begin by providing a few basic lemmas; these lemmas are not fundamentally
novel, but they will be used in the subsequent proofs of our main upper and lower
bounds, and also help provide intuition for the behavior of the Wasserstein metric
and its connections to other metrics between probability distributions. The proofs
of these lemmas are given later, in Section 6.9. Our first lemma relates Wasserstein
distance to the notion of resolution of a partition.

Lemma 41. Suppose S ∈ S is a countable Borel partition of Ω. Let P and Q be Borel
probability measures such that, for every S ∈ S, P (S) = Q(S). Then, for any r ≥ 1,
Wr(P,Q) ≤ Res(S).

Our next lemma gives simple lower and upper bounds on the Wasserstein dis-
tance between distributions supported on a countable subset X ⊆ Ω, in terms of
Diam(X ) and Sep(X ). Since our main results will utilize coverings and packings to
approximate Ω by finite sets, this lemma will provide a first step towards approxi-
mating (in Wasserstein distance) distributions on Ω by distributions on these finite
sets. Indeed, the lower bound in Inequality (6.8) will suffice to prove our lower
bounds, although a tighter upper bound, based on the upper bound in (6.8), will be
necessary to obtain tight upper bounds.

Lemma 42. Suppose (Ω, ρ) is a metric space, and suppose P and Q are Borel probability
distributions on Ω with countable support; i.e., there exists a countable set X ⊆ Ω with
P (X ) = Q(X ) = 1. Then, for any r ≥ 1,

(Sep(X ))r
∑
x∈X
|P ({x})−Q({x})| ≤W r

r (P,Q) ≤ (Diam(X ))r
∑
x∈X
|P ({x})−Q({x})| .

(6.8)

Remark 43. Recall that the term
∑

x∈X |P ({x})−Q({x})| in Inequality (6.8) is the L1

distance
‖p− q‖1 :=

∑
x∈X
|p(x)− q(x)|

between the densities p and q of P and Q with respect to the counting measure on
X , and that this same quantity is twice the total variation distance

TV (P,Q) := sup
A⊆Ω
|P (A)−Q(A)| .

Hence, Lemma 42 can be equivalently written as

Sep(Ω) (‖p− q‖1)1/r ≤Wr(P,Q) ≤ Diam(Ω) (‖p− q‖1)1/r
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and as

Sep(Ω) (2TV (P,Q))1/r ≤Wr(P,Q) ≤ Diam(Ω) (2TV (P,Q))1/r ,

bounding the r-Wasserstein distance in terms of the L1 and total variation distance.
As noted in Example 4, equality holds in (6.8) precisely when ρ is the unit discrete
metric given by ρ(x, y) = 1{x 6=y} for all x, y ∈ Ω.

On metric spaces that are discrete (i.e., when Sep(Ω) > 0), the Wasserstein metric
is (topologically) at least as strong as the total variation metric (and the L1 metric,
when it is well-defined), in that convergence in Wasserstein metric implies conver-
gence in total variation (andL1, respectively). On the other hand, on bounded metric
spaces, the converse is true. In either of these cases, rates of convergence may differ
between metrics, although, in metric spaces that are both discrete and bounded (e.g.,
any finite space), we have Wr � TV 1/r.

To obtain tight bounds as discussed below, we will require not only a partition
of the sample space Ω, but a nested sequence of partitions, defined as follows.

Definition 44 (Refinement of a Partition, Nested Partitions). Suppose S, T ∈ S are
partitions of Ω. T is said to be a refinement of S if, for every T ∈ T , there exists S ∈ S
with T ⊆ S. A sequence {Sk}k∈N of partitions is called nested if, for each k ∈ N, Sk is
a refinement of Sk+1,

While Lemma 42 gave a simple upper bound on the Wasserstein distance, the
factor of Diam(Ω) turns out to be too large to obtain tight rates for a number of cases
of interest (such as the D-dimensional unit cube Ω = [0, 1]D, discussed in Exam-
ple 5). The following lemma gives a tighter upper bound, based on a hierarchy of
nested partitions of Ω; this allows us to obtain tighter bounds (than Diam(Ω)) on the
distance that mass must be transported between P and Q. Note that, when K = 1,
Lemma 45 reduces to a trivial combination of Lemmas 41 and 42; indeed, these lem-
mas are the starting point for proving Lemma 45 by induction on K.

Note that the idea of such a “multi-resolution” upper bound has been utilized
extensively before, and numerous versions have been proven before (see, e.g., Fact 6
of Do Ba, Nguyen, Nguyen, and Rubinfeld (2011), Lemma 6 of Fournier and Guillin
(2015), or Proposition 1 of Weed and Bach (2017)). Most of these versions have been
specific to Euclidean space; to the best of our knowledge, only Proposition 1 of Weed
and Bach (2017) applies to general metric spaces. However, that result also requires
that (Ω, ρ) is totally bounded (more precisely, that m∞x (P ) <∞, for some x ∈ Ω).

Lemma 45. Let K be a positive integer. Suppose {Sk}k∈N is a nested sequence of countable
Borel δ-partitions of (Ω, ρ). Then, for any r ≥ 1 and Borel probability measures P and Q on
Ω,

W r
r (P,Q) ≤ (Res(S0))r +

∞∑
k=1

(Res(Sk))r
 ∑
S∈Sk+1

|P (S)−Q(S)|

 . (6.9)

Lemma 45 requires a sequence of partitions of Ω that is not only multi-resolution
but also nested. While the ε-covering number implies the existence of small parti-
tions with small resolution, these partitions need not be nested as ε becomes small.
For this reason, we now give a technical lemma that, given any sequence of parti-
tions, constructs a nested sequence of partitions of the same cardinality, with only a
small increase in resolution.
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Lemma 46. Suppose S and T are partitions of (Ω, ρ), and suppose S is countable. Then,
there exists a partition S ′ of (Ω, ρ) such that:

a) |S ′| ≤ |S|.

b) Res(S ′) ≤ Res(S) + 2 Res(T ).

c) T is a refinement of S ′.

Lemmas 45 and 46 are the main tools needed to bound the expected Wasserstein
distance E[W r

r (P, P̂ )] of the empirical distribution from the true distribution into a
sum of its expected errors on each element of a nested partition of Ω. Then, we will
need to control the total expected error across these partition elements, which we
will show behaves similarly to the L1 error of the standard maximum likelihood
(mean) estimator a multinomial distribution from its true mean. Thus, the following
result of Han, Jiao, and Weissman (2015) will be useful.

Lemma 47 (Theorem 1 of (Han, Jiao, and Weissman, 2015)). Suppose (X1, ..., XK) ∼
Multinomial(n, p1, ..., pK). Let

Z := ‖X − np‖1 =

K∑
k=1

|Xk − npk| .

Then, E [Z/n] ≤
√

(K − 1)/n.

Finally, we are ready to prove Theorem 38.

Theorem 38. Let (Ω, ρ) be a metric space on which P is a Borel probability measure.

Let P̂ denote the empirical distribution of n IID samples X1, ..., Xn
IID∼ P , give by

P̂ (S) :=
1

n

n∑
i=1

1{Xi∈S}, ∀S ∈ Σ.

Then, for any sequence {εk}k∈[K] ∈ (0,∞)K with ε0 = Diam(Ω),

E
[
W r
r (P, P̂ )

]
≤ εrK +

1√
n

K∑
k=1

 K∑
j=k−1

2j−kεj

r√
N(εk)− 1.

Proof: By recursively applying Lemma 46, there exists a sequence {Sk}k∈[K] of
partitions of (Ω, ρ) satisfying the following conditions:

1. for each k ∈ [K], |Sk| = N(εk).

2. for each k ∈ [K], Res(Sk) ≤
K∑
j=k

2j−kεj .

3. {Sk}k∈[K] is nested.

Note that, for any k ∈ [K], the vector nP̂ (S) (indexed by S ∈ Sk) follows an n-
multinomial distribution over |Sk| categories, with means given by P (S); i.e.,

(nP̂ (S1), ..., nP̂ (Sk)) ∼ Multinomial(n, P (S1), ..., P (Sk)).
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Thus, by Lemma 47, for each k ∈ [K],

E

∑
S∈Sk

∣∣∣P (S)− P̂ (S)
∣∣∣
 ≤√ |Sk| − 1

n
=

√
N(εk)− 1

n
.

Thus, by Lemma 45,

E [W r
r (P,Q)] ≤ E

εrK +
K∑
k=1

 K∑
j=k

2j−kεj

r∑
S∈Sk

|P (S)−Q(S)|


≤ εrK +

K∑
k=1

 K∑
j=k

2j−kεj

r

E

∑
S∈Sk

|P (S)−Q(S)|


≤ εrK +

1√
n

K∑
k=1

 K∑
j=k

2j−kεj

r√
N(εk)− 1

6.8 Proof Sketch of Theorem 38

In this section, we prove our more general upper bound, Theorem 38, which ap-
plies to potentially unbounded metric spaces (Ω, ρ), assuming that P is sufficiently
concentrated (i.e., has at least ` > 0 finite moments).

The basic idea is to partition the potentially unbounded metric space (Ω, ρ) into
countably many totally bounded subsets B1, B2, ..., and to decompose the Wasser-
stein error into its error on each Bi, weighted by the probability P (Bi). Specifically,
fixing an arbitrary base point x0,B1, B2, ...will be spherical shells, such that x0 ∈ B1,
and both the distance between Bi and x0, as well as the size (covering number) of
Bi, increase with i. For large i, the assumption that P has ` bounded moments im-
plies (by Markov’s inequality) that P (Bi) is small, whereas, for small i, we adapt our
previous result Theorem 38 in terms of the covering number.

To carry out this approach, we will need two new lemmas. The first decomposes
Wasserstein distance into the sum of its distances on each Bi, and can be consid-
ered an adaptation of Lemma 2.2 of Lei (2018) (for Banach spaces) to general metric
spaces.

Lemma 48. Fix a reference point x0 ∈ Ω and a non-decreasing real-valued sequence {wk}k∈N
with w0 = 0 and limk→∞wk =∞. For each k ∈ N, define

Bk := {x ∈ Ω : wk ≤ ρ(x0, x) < wk+1} .

Then, there exists a constant Cr depending only on r such that, for any Borel probability
measures P and Q on Ω,

W r
r (P,Q) ≤ Cr

∞∑
k=0

wrk min {P (Bk), Q(Bk)}W r
r (PBk , QBk) + |P (Bk)−Q(Bk)| .

where, for any sets A,B ⊆ Ω,

PA(B) =
P (A ∩B)

P (B)
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(under the convention that 0
0 = 0) denotes the conditional probability of B given A, under

P .

The second lemma is more nuanced variant of Lemma 47 (albeit, leading to
slightly looser constants). When i is large the covering number of Bi can become
quite large, but the total probability P (Bi) is quite small. Whereas Lemma 47 de-
pends only on the size of the partition, the following result will allow us to control
the total error using both of these factors.

Lemma 49 (Theorem 1 of Berend and Kontorovich (2013)). SupposeX ∼ Binomial(n, p).
Then, we have the bound

E [|X − np|] ≤ nmin
{

2P (A),
√
P (A)/n

}
. (6.10)

on the mean absolute deviation of X .

Finally, we are ready to prove our main upper bound result for unbounded met-
ric spaces.
Theorem 38 (General Upper Bound for Unbounded Metric Spaces). Let x0 ∈ Ω and
suppose m`,x0(P ) ∈ [1,∞). Let J be a positive integer. Fix two non-decreasing real-
valued sequences {wk}k∈N and {εj}j∈N, of which {wk}k∈N is non-decreasing with
w0 = 0 and limk→∞wk =∞ and {εj}j∈[J ] is non-increasing. For each k ∈ N, define

Bk(x0) := {y ∈ Ω : wk ≤ ρ(x0, x) < wk+1} .

Then,

E
[
W r
r (P, P̂ )

]
≤ m`

`,x0

∑
k∈N

w−`k (εJ)r + 2rw
r−`/2
k min

{
2w
−`/2
k ,

√
1

n

}

+
J∑
j=1

 J∑
t=j

2J−tεt

r

min

2w−`k ,

√
w−`k
n
N(Bk, ρ, εj)

 .

Proof: As in the proof of Theorem 38, by recursively applying Lemma 46, for
each k ∈ N, we can construct a nested sequence {Sk,j}j∈[Jk] of partitions of Bk such
that, for each j ∈ [Jk],

|Sk,j | = N(Bk, ρ, εk,j) and Res(Sk,j) ≤
j∑
t=0

2tεk,j . (6.11)

Since each PBk and P̂Bk are supported only on Bk, plugging the bound Lemma 45
into the bound in Lemma 48 gives

W r
r (P, P̂ )

≤
∑
k∈N

min
{
P (Bk), P̂ (Bk)

}(Res(Sk,0))r +

Jk∑
j=1

(Res(Sk,j))r
∑

S∈Sk,j+1

∣∣∣PBk(S)− P̂Bk(S)
∣∣∣


+ 2rwrk

∣∣∣P (Bk)− P̂ (Bk)
∣∣∣

≤
∑
k∈N

2rwrk

∣∣∣P (Bk)− P̂ (Bk)
∣∣∣+ P (Bk) (Res(Sk,0))r +

J∑
j=1

(Res(Sk,j))r
∑

S∈Sk,j+1

∣∣∣P (S)− P̂ (S)
∣∣∣ .
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Since each P̂ (S) ∼ Binomial(n, P (S)), for each k ∈ N and j ∈ [Jk], Lemma 49 fol-
lowed by Cauchy-Schwarz gives

E

 ∑
S∈Sk,j

∣∣∣P (S)− P̂ (S)
∣∣∣
 ≤ ∑

S∈Sk,j+1

min
{

2P (S),
√
P (S)/n

}

≤ min

{
2P (Bk),

√
P (Bk)

n
|Sk,j |

}
.

Therefore, taking expectations (over X1, ..., Xn), applying Inequality 6.11, and ap-
plying Lemma 49 once more gives

E
[
W r
r (P, P̂ )

]
≤
∑
k∈N

P (Bk) (εk,0)r + 2rwrk min
{

2P (Bk),
√
P (Bk)/n

}

+

Jk∑
j=1

(
j∑
t=0

2tεk,j

)r
min

{
2P (Bk),

√
P (Bk)

n
N(Bk, ρ, εk,j+1)

}
.

Now note that, by Markov’s inequality,

P (Bk) ≤ PX∼P [ρ(x0, X) ≥ wk] = PX∼P
[
ρ`(x0, X) ≥ w`k

]
≤
m`
`,x0

(P )

w`k
. (6.12)

Therefore, assuming that each m`
`,x0
≥ 1, so that m`

`,x0
≥ m`/2

`,x0
,

E
[
W r
r (P, P̂ )

]
≤ m`

`,x0

∑
k∈N

w−`k (εk,0)r + 2rwrk min

{
2w−`k ,

√
w−`k /n

}

+

Jk∑
j=1

(
j∑
t=0

2tεk,j

)r
min

2w−`k ,

√
w−`k
n
N(Bk, ρ, εk,j+1)

 ,

proving the theorem.

6.9 Proofs of Lemmas

Lemma 41. Suppose S ∈ S is a countable Borel partition of Ω. Let P and Q be Borel
probability measures such that, for every S ∈ S, P (S) = Q(S). Then, for any r ≥ 1,
Wr(P,Q) ≤ Res(S).

Proof: This fact is intuitively obvious; clearly, there exists a transportation map µ
from P to Q that moves mass only within each S ∈ S and therefore without moving
any mass further than δ. For completeness, we give a formal construction.

Let µ : Σ2 → [0, 1] denote the coupling that is conditionally independent given
any set S ∈ S with P (S) = Q(S) > 0 (that is, for any A,B ∈ Σ, µ(A × B ∩ S ×
S)P (S) = P (A ∩ S)Q(B ∩ S)).3 It is easy to verify that µ ∈ C(P,Q). Since S is a

3The existence of such a measure can be verified by the Hahn-Kolmogorov theorem, similarly to
that of the usual product measure (see, e.g., Section IV.4 of Doob (2012)).
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countable partition and µ is only supported on
⋃
S∈S S × S,

Wr(P,Q) ≤
(∫

Ω×Ω
ρr(x, y) dµ(x, y)

)1/r

=

(∑
S∈S

∫
S×S

ρr(x, y) dµ(x, y)

)1/r

≤

(∑
S∈S

∫
S×S

δr dµ(x, y)

)1/r

= δ

(∑
S∈S

µ(S × S)

)1/r

= δ

(∑
S∈S

P (S)Q(S)

P (S)

)1/r

= δ

(∑
S∈S

Q(S)

)1/r

= δ.

Lemma 42. Suppose (Ω, ρ) is a metric space, and suppose P andQ are Borel probabil-
ity distributions on Ω with countable support; i.e., there exists a countable set X ⊆ Ω
with P (X ) = Q(X ) = 1. Then, for any r ≥ 1,

(Sep(X ))r
∑
x∈X
|P ({x})−Q({x})| ≤W r

r (P,Q) ≤ (Diam(X ))r
∑
x∈X
|P ({x})−Q({x})| .

Proof: The term
∑

x∈X |P ({x})−Q({x})| = TV (P,Q) is precisely the (unweighted)
amount of mass that must be transported to transform between P andQ. Hence, the
result is intuitively fairly obvious; all mass moved has a cost of at least Sep(Ω) and
at most Diam(Ω). However, for completeness, we give a more formal proof below.

To prove the lower bound, suppose µ ∈ Π(P,Q) is any coupling between P and
Q. For x ∈ X ,

µ({x} × {x}) + µ({x} × (Ω\{x})) = µ({x} × Ω) = P ({x})

and, similarly,

µ({x} × {x}) + µ((Ω\{x})× {x}) = µ(Ω× {x}) = Q({x}).

Since P ({x}), Q({x}) ∈ [0, 1], it follows that

µ({x} × (Ω\{x})) + µ(µ((Ω\{x})× {x})) ≥ |P ({x} −Q({x})| .

Therefore, since ρ(x, y) = 0 whenever x = y and ρ(x, y) ≥ Sep(Ω) whenever x 6= y,∫
Ω×Ω

ρr(x, y) dµ(x, y) =

∫
X×X

ρr(x, y) dµ(x, y)

=
∑
x∈X

∫
{x}×(Ω\{x})

ρr(x, y) dµ(x, y) +

∫
(Ω\{x})×{x}

ρr(x, y) dµ(x, y)

≥ (Sep(Ω))r
∑
x∈X

µ({x} × (Ω\{x})) + µ((Ω\{x})× {x})

≥ (Sep(Ω))r
∑
x∈X
|P ({x})−Q({x})| .



108 Chapter 6. Wasserstein Convergence of the Empirical Measure

Taking the infimum over µ on both sides gives

(Sep(Ω))r
∑
x∈X
|P ({x})−Q({x})| ≤W r

r (P,Q).

To prove the upper bound, since ρ is upper bounded by Diam(Ω), it suffices to con-
struct a coupling µ that only moves mass into or out of each given point, but not
both; that is, for each x ∈ X ,

min{µ({x} × (Ω\{x})), µ((Ω\{x})× {x})} = 0.

One way of doing this is as follows. Fix an ordering x1, x2, ... of the elements of X .
For each i ∈ N, define

Xi :=
i∑

`=1

(P (x`)−Q(x`))+ and Yi :=
i∑

`=1

(Q(x`)− P (x`))+,

and further define

ji := min{j ∈ N : Xi ≤ Yj} and ki := min{k ∈ N : Xj ≥ Yi}.

Then, for each i ∈ N, move Xi mass from {x1, ..., xi} to {y1, ..., yji} and move Yi
mass from {y1, ..., yi} to {x1, ..., xki}. As i → ∞, by construction of Xi and Yi, the
total mass moved in this way is

µ((X × X )\{(x, x) : x ∈ X}) = lim
i→∞

Xi + Yi =
∑
x∈X
|P (x)−Q(x)| .

Lemma 45. Let K be a positive integer. Suppose {Sk}k∈[K] is a sequence of nested
countable Borel partitions of (Ω, ρ), with S0 = Ω. Then, for any r ≥ 1 and any Borel
probability distributions P and Q on Ω,

W r
r (P,Q) ≤ (Res(SK))r +

K∑
k=1

(Res(Sk−1))r

∑
S∈Sk

|P (S)−Q(S)|

 .

Proof: Our proof follows the same ideas as and slightly generalizes of the proof
of Proposition 1 in Weed and Bach (2017). Intuitively, to prove Lemma 45 it suffices
to find a transportation map such that For each k ∈ [K], recursively define

Pk := P −
k−1∑
j=0

µk and Qk := Q−
k−1∑
j=0

νk,

where, for each k ∈ [K], µk and νk are Borel measures on Ω defined for any E ∈ Σ
by

µk(E) :=
∑

S∈Sk:Pk(S)>0

(Pk(S)−Qk(S))+

Pk(E ∩ S)

Pk(S)

and
νk(E) :=

∑
S∈Sk:Qk(S)>0

(Qk(S)− Pk(S))+

Qk(E ∩ S)

Qk(S)
.
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By construction of µk and νk, each µk and νk is a non-negative measure and∑K
k=1 µk ≤ P and

∑K
k=1 νk ≤ Q. Furthermore, for each k ∈ [K − 1], for each S ∈ Sk,

µk+1(S) = νk+1(S), and

µk(Ω) = νk(Ω) ≤
∑
S∈Sk

|P (S)−Q(S)| .

Consequently, although µ and ν are not probability measures, we can slightly gen-
eralize the definition of Wasserstein distance by writing

W r
r (µk, νk) := µ(Ω) inf

τ∈Π
(

µk
µk(Ω)

,
νk

νk(Ω)

) E
(X,Y )∼µ

[ρr (X,Y )]

(or W r
r (µk, νk) = 0 if µk = νk = 0). In particular, this is convenient because we one

can easily show that, by construction of the sequences {Pk}k∈[K] and {Qk}k∈[K],

W r
r (P,Q) ≤W r

r (PK , QK) +
K∑
k=1

W r
r (µk, νk) . (6.13)

For each k ∈ [K], Lemma 42 implies that

W r
r (µk, νk) ≤

∑
S∈Sk−1

(Diam(S))r
∑

T∈Sk:T⊆S
|P (T )−Q(T )|

≤ (Res(Sk−1))r
∑

S∈Sk−1

∑
T∈Sk:T⊆S

|P (T )−Q(T )|

= (Res(Sk−1))r
∑
T∈Sk

|P (T )−Q(T )| .

Furthermore, for each S ∈ SK , PK = QK , Lemma 41 gives that

W r
r (PK , QK) ≤ (Res(SK))r

Plugging these last two inequalities into Inequality (6.13) gives the desired result:

W r
r (P,Q) ≤ (Res(SK))r +

K∑
k=1

(Res(Sk−1))r
∑
S∈Sk

|P (S)−Q(S)| .

Lemma 46. Suppose S and T are partitions of (Ω, ρ), and suppose S is countable.
Then, there exists a partition S ′ of (Ω, ρ) such that:

a) |S ′| ≤ |S|.

b) Res(S ′) ≤ Res(S) + 2 Res(T ).

c) T is a refinement of S ′.

Proof: Enumerate the elements of S as S1, S2, .... Define S′0 := ∅, and then, for
each i ∈ {1, 2, ...}, recursively define

S′i :=

 ⋃
T∈T :T∩Si 6=∅

T

∖i−1⋃
j=1

S′j

 ,
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and set S ′ = {S′1, S′2, ...}. Clearly, |S ′| ≤ |S| (equality need not hold, as we may have
some S′i = ∅). By the triangle inequality, each

Diam(S′i) ≤ Diam

 ⋃
T∈T :T∩Si 6=∅

T

 ≤ δS + 2δT .

Finally, since T is a partition and we can write

S′i =

 ⋃
T∈T :T∩Si 6=∅

T

∖i−1⋃
j=1

⋃
T∈T :T∩S′j 6=∅

T

 ,

T is a refinement of S ′.

6.10 Proof of Lower Bound

In this section, we provide a proof of our main lower bound, Theorem 39 in the main
text. The proof consists of two main steps. First, we show that the minimax error of
estimation in Wasserstein distance can be lower bounded by a product of two terms,
one depending on the packing radius R and the other depending on the minimax
risk of estimating a particular discrete (i.e., multinomial) distribution under L1 loss.
The second step is then to apply a minimax lower bound on the risk of estimating
a multinomial distribution under L1 loss. These two steps respectively rely on two
lemmas, Lemma 50 and Lemma 51 given below.

The first lemma implies that, when a distribution P is supported on a finite sub-
set D of the sample space, then there exists an estimator P̂D of P̂ that is supported
on D is minimax optimal, up to a small constant factor. While this fact is relatively
obvious for measure-theoretic metrics such as Lp distances, it is somewhat less obvi-
ous for Wasserstein distances, which also depend on metric properties of the space.
This observation is key to lower bounding the minimax rate in terms of the minimax
rate for estimating a discrete distribution.

Lemma 50 (Wasserstein Projections). Let (X , ρ) be a metric space and let D ⊆ X be
finite. Let P denote the family of all Borel probability distributions on X , and let

PD := {P ∈ P : P (D) = 1}

denote the set of distributions supported only on D. Suppose P ∈ PD and Q ∈ P . Then,

argmin
Q̃∈PD

Wr(Q, Q̃) 6= ∅ and, for any Q′ ∈ argmin
Q̃∈P ′

Wr(Q, Q̃),

we have Wr(P,Q
′) ≤ 2Wr(P,Q).

Proof: Let {Sx}x∈D denote the Voronoi diagram of X with respect to D; that is,
for each x ∈ D, let

Sx := {y ∈ X : x ∈ argmin
z∈D

ρ(x, y)}.

Since {Sx}x∈D is a finite cover of X , we can disjointify it (see Remark 36) while re-
taining the property that, for every x ∈ D and every y ∈ Sx, ρ(x, y) = minz∈D ρ(z, y);
hence, we assume without loss of generality that {Sx}x∈D is a partition of X . Then,
there is a unique distribution Q′ ∈ PD such that, for each x ∈ D, Q′({x}) = Q(Sx). It
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is easy to see by definition of the Voronoi diagram that Q′ ∈ argmin
Q̃∈PDWr(Q, Q̃);

the unique transportation map µ∗ ∈ Π(Q,Q′) such that each µ(Sx, {x}) = Q(Sx)
clearly minimizes

E
(X,Y )∼µ

[ρr(X,Y )]

over all µ ∈
⋃
Q̃∈PD Π(Q, Q̃). Moreover, since P ∈ PD, by the triangle inequality and

the definition of Q′, Wr(P,Q
′) ≤Wr(P,Q) +Wr(Q,Q

′) ≤ 2Wr(P,Q).
The second lemma is a simple minimax lower bound for the problem of estimat-

ing the mean vector of a multinomial distribution, under L1 loss.

Lemma 51 (Minimax Lower Bound for Mean of Multinomial Distribution). Suppose
k ≤ 32n. Let p ∈ ∆k, and suppose X1, ..., Xn

IID∼ Categorical(p1, ..., pk) are distributed
IID according to a categorical distribution on [k], with mean vector p. Then, we have the
following minimax lower bound for estimating p under L1-loss:

inf
p̂

sup
p∈∆k

E [‖p− p̂‖1] ≥ 3 log 2

4096

√
k − 1

n
,

where the infimum is taken over all estimators (i.e., all (potentially randomized) functions
p̂ : [k]n → ∆k of the data).

Note that, while the above result is phrased for categorical distributions to sim-
plify notation in the proof, the result is equivalent to a statement for multinomial
distributions, since

∑n
i=1Xi ∼Multinomial(n, p1, ..., pk) and X1, ..., Xn are assumed

to be IID and therefore exchangeable.
Proof: We follow a standard procedure for proving minimax lower bounds based

on Fano’s inequality, as outlined in Section 2.6 of Tsybakov (2008).
Let p0 = (1/k, ...., 1/k) ∈ ∆K denote the uniform vector in ∆k. Let I :=

[
bk2c
]
.

For each j ∈ I, define φj : [k]→ Rk by

φj := 1{2j−1} − 1{2j},

and, for each τ ∈ {−1, 1}I , define

pτ := p0 +
c

k

∑
j∈I

τjφj ,

where

c =
1

16

√
k − 1

n
log 2 ≤ 1

2
.

Note that, since |c| ≤ 1 and, for each j ∈ I,
∑

`∈[k] φj(`) = 0, each pτ ∈ ∆k. Observe
that, for any τ, τ ′ ∈ {−1, 1}I , we have

‖pτ − pτ ′‖1 =
4cω(τ, τ ′)

k
, where ω(τ, τ ′) =

∑
i∈I

1{τi 6=τ ′i}

denotes the Hamming distance between τ and τ ′. By the Varshamov-Gilbert bound
(see, e.g., Lemma 2.9 of Tsybakov (2008)), there exists a subset T ⊆ {−1, 1}I such
that log |T | ≥ bk/2c log 2

8 and, for every τ, τ ′ ∈ T ,

ω(τ, τ ′) ≥ |I|
8

=
bk/2c

8
, and hence ‖pτ − pτ ′‖1 ≥ c

bk/2c
2k

.
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Also, for any τ ∈ T ,

DKL(pnτ , p
n
0 ) = nDKL(pτ , p0)

= n
∑
j∈[k]

pτ,j log

(
pτ,j
p0,j

)

= n
∑
j∈I

pτ,2j−1 log

(
pτ,2j−1

1/k

)
+ pτ,2j log

(
pτ,2j
1/k

)
=
n|I|
k

((1− c) log (1− c) + (1 + c) log (1 + c))

One can check (e.g., by Taylor expansion) that, for any c ∈ (0, 1/2),

(1− c) log (1− c) + (1 + c) log (1 + c) < 2c2.

Thus, since |I| ≤ k/2,

DKL(pnτ , p
n
0 ) ≤ 2n|I|c2

k
≤ nc2.

It follows that from the choice of c (and noting that, by the assumptions that k ≤ 32n,
c ∈ (0, 1/2)) that

1

|T |
∑
τ∈T

DKL(pnτ , p
n
0 ) ≤ nc2 ≤ bk/2c log 2

128
≤ 1

16
log |T |.

Therefore, by Fano’s method for lower bounds (see, e.g., Theorem 2.5 of Tsybakov
(2008), with α = 1/16 and

s :=
c

16
≤ cbk/2c

4k
≤ 1

2
‖pτ − pτ ′‖1,

we have

inf
p̂

sup
p∈∆k

E [‖p− p̂‖1] ≥ inf
p̂

sup
p∈∆k

c
bk/2c

4k
P
[
‖p− p̂‖1 ≥ c

bk/2c
4k

]
≥ cbk/2c

4k

3

16

≥ 3 log 2

4096

√
k − 1

n
.

Theorem 39. Let (Ω, ρ) be a metric space, and let P denote the set of Borel probability
measures on (Ω, ρ).

inf
P̂ :Xn→P

sup
P∈P

E
X1,...,Xn

IID∼ P

[
W r
r (P, P̂ (X1, ..., Xn))

]
≥ cr sup

k∈[32n]
Rr(k)

√
k − 1

n
,

where
cr =

3 log 2

4096 · 2r
.

is independent of n and the infimum is taken over all estimators (i.e., all (potentially
randomized) functions P̂ : X n → P of the data).
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Proof: Let k ≤ 32n, and let D be an R(k)-packing D of (Ω, ρ) with |D| = k. Let
PD denote the class of (discrete) distributions over D.

By Lemma 42, Lemma 50, Lemma 51, and the definition of the packing radius (in
that order)

inf
P̂ :Xn→P

sup
P∈P

E
[
W r
r (P̂ , P )

]
≥ (Sep(D))r inf

P̂ :Xn→P
sup
P∈P

E
[
‖P̂ − P‖1

]
≥ (Sep(D))r inf

P̂ :Xn→P
sup
P∈PD

E
[
‖P̂ − P‖1

]
≥
(

Sep(D)

2

)r
inf

P̂ :Xn→PD
sup
P∈PD

E
[
‖P̂ − P‖1

]
≥ 3 log 2

4096 · 2r
(Sep(D))r

√
|D| − 1

n

≥ 3 log 2

4096 · 2r
Rr(k)

√
k − 1

n
.

The theorem follows by taking the supremum over k ≤ 32n on both sides.

6.11 Proofs of Minimax Lower Bound in terms of Moment
Bounds

In this section, we prove a second lower bound theorem (Theorem 40), for the case
of distributions with unbounded support and bounded moments.

Theorem 40. Suppose r, `, µ > 0 are constants, and fix x0 ∈ Ω. Let P`,x0(µ) denote the
family of distributions P on Ω with `th moment µ`,x0(P ) ≤ µ around x0 at most µ.
Let n ≥ 3µ

2 and assume there exists x1 ∈ Ω such that ρ(x0, x1) = n1/`. Then,

M(r,P`,x0(µ)) ≥ Cµn
r−`
` ,

where Cµ := min{µ,2/3}
24 is constant in n.

Proof: First, note a standard lemma for minimax lower bounds, which we reiter-
ate in the case of Wasserstein distances:

Lemma 52 (Theorem 2.1 of Tsybakov (2009), Wasserstein Case). Assume there exist
P0, P1 ∈ P such that P0 � P1 and W r

r (P0, P1) ≥ 2s > 0 such that DKL (Pn0 , P
n
1 ) ≤ 1

2 .
Then,

inf
P̂ :Ω→P

sup
P∈P

P
[
W r
r

(
P̂ , P

)
≥ s
]
≥ 1

2
P1

(
dP0

dP1
(x) ≥ 1

)
.

We now construct appropriate P0 and P1 to plug into the above lemma. Define

ε :=
min {µ, 2/3}

2n
∈ (0, 1/3],

and consider distinguishing between two discrete distributions

P0 := (1− ε) δx0 + εδx1 and P1 := (1− 2ε) δx0 + 2εδx1

where δx denotes a unit point mass at x. Since, ε ∈ [0, 1/2], P0 and P1 are both
probability distributions. Moreover, µ`,x0 (P0) = εn ≤ µ/2, and µ`,x0 (P1) = 2εn ≤ µ,
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so that P0, P1 ∈ P`,x0(µ). Note that, since ε ≤ 1/3, by the inequality log(1 + x) ≤ x,
we have

(1− ε) log
1− ε
1− 2ε

= (1− ε) log

(
1 +

ε

1− 2ε

)
≤ (1− ε) ε

1− 2ε
≤ 2ε.

Therefore,

DKL (Pn0 , P
n
1 ) = nDKL (P0, P1) = n

(
P0(x0) log

P0(x0)

P1(x0)
+ P0(x1) log

P0(x1)

P1(x1)

)
= n

(
(1− ε) log

1− ε
1− 2ε

+ ε log
ε

2ε

)
≤ n (2ε− ε log 2) ≤ 1

2
,

since 2− log 2 ≤ 3/2. Finally, note that

W r
r (P0, P1) = εnr/` = min

{
µ

2
,
1

3

}
n
r−`
` .

Plugging P0 and P1 into Lemma 52 with s = min
{µ

4 ,
1
6

}
n
r−`
` thus gives

inf
P̂ :Ω→P`,x0

(µ)
sup

P∈P`,x0
(µ)

P
[
W r
r

(
P̂ , P

)
≥ s
]
≥ 1

2
P1 (x0) =

1− 2ε

2
≥ 1/6.

Thus,

M(r,P`,x0(µ)) = inf
P̂ :Ω→P`,x0

(µ)
sup

P∈P`,x0
(µ)

E
Xn

1
IID∼ P

[
W r
r

(
P̂ , P

)]
≥ s

6
=

min {µ, 2/3}
24

n
r−`
` .
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Chapter 7

Distribution Estimation under
Adversarial Losses

7.1 Introduction

This chapter, as with the previous chapter, studies the fundamental problem of es-
timating a probability distribution, with an emphasis on using a variety of differ-
ent measures of losses. While the previous chapter studied r-Wasserstein distances,
which directly measures the average distance that we must transport mass to trans-
form the estimate into the true distribution, the present chapter studies the maxi-
mum, over functions f in a pre-selected “discriminator class” F , of the difference in
the expectations of f under the estimated and true distributions, a distance which we
refer to as an “adversarial loss”. Both Wasserstein and adversarial losses are quite
flexible, and can be tailored to be used with many different types of data and no-
tions of error – for Wasserstein distances, this flexibility is achieved is through spec-
ification of the underlying metric ρ, whereas, for adversarial losses, this is achieved
through specification of the class F . In adversarial losses, the role of distance in the
sample space can be indirectly but precisely captured by properties, such as smooth-
ness, of the functions inF – smoother classesF are more tolerant of “short-distance”
or “local” errors.

As in the previous chapter, we focus on minimax rates of distribution estimation.
The main difference in this chapter is the incorporation of distributional (density)
smoothness – we obtain improved rates when the true data distribution is assumed
to be smooth. To achieve this, rather than simply using the empirical distribution,
we use series estimators, essentially regularizing the Fourier series of the estimate.
Interestingly, in the Fourier basis, contributions of smoothness in the distribution
class and smoothness in the discriminator class F interact very nicely, leading to a
rather straightforward analysis.

This chapter also includes a careful mathematical formalization of the notion of
“implicit density estimation” (traditionally known simply as “sampling”), recently
popularized by deep generative models such as variational autoencoders (VAEs)
and generative adversarial networks (GANs). We formally show that convergence
rates, in both minimax and other senses, for density estimation and for implicit gen-
erative modeling, are, under very mild conditions, essentially identical. Importantly,
this means that the recent empirical successes of implicit generative models such as
GANs and VAEs cannot be attributed, at least from a statistical perspective, to the
ease of sampling over estimation. The difference may, in our view, have more to do
with the computational tractability of these models.

Note that, since this work was published (in NeurIPS 2018), the term Integral
Probability Metric (IPM) had superseded “adversarial loss” as the most common
name for these losses. In this chapter, we stick with “adversarial loss”, as in the



116 Chapter 7. Distribution Estimation under Adversarial Losses

original paper, but, in the remainder of the thesis, we often use the term “IPM” to
mean the same thing.

7.2 Background

Generative modeling, that is, modeling the distribution from which data are drawn,
is a central task in machine learning and statistics. Often, prior information is insuf-
ficient to guess the form of the data distribution. In statistics, generative modeling in
these settings is usually studied from the perspective of nonparametric density esti-
mation, in which histogram, kernel, orthogonal series, and nearest-neighbor meth-
ods are popular approaches with well-understood statistical properties (Wasserman,
2006; Tsybakov, 2009; Efromovich, 2010; Biau and Devroye, 2015b).

Recently, machine learning has made significant empirical progress in generative
modeling, using such tools as generative adversarial networks (GANs) and varia-
tional autoencoders (VAEs). Computationally, these methods are quite distinct from
classical density estimators; they usually rely on deep neural networks, fit by black-
box optimization, rather than a mathematically prescribed smoothing operator, such
as convolution with a kernel or projection onto a finite-dimensional subspace.

Ignoring the implementation of these models, from the perspective of statistical
analysis, these recent methods have at least two main differences from classical den-
sity estimators. First, they are implicit, rather than explicit (or prescriptive) generative
models (Diggle and Gratton, 1984; Mohamed and Lakshminarayanan, 2016); that
is, rather than an estimate of the probability of a set or the density at a point, they
return novel samples from the data distribution. Second, in many recent models,
loss is measured not with Lp distances (as is conventional in nonparametric statis-
tics (Wasserman, 2006; Tsybakov, 2009)), but rather with weaker losses, such as

dFD(P,Q) = sup
f∈FD

∣∣∣∣ E
X∼P

[f(X)]− E
X∼Q

[f(X)]

∣∣∣∣ , (7.1)

where FD is a discriminator class of bounded, Borel-measurable functions, and P and
Q lie in a generator class FG of Borel probability measures on a sample space X . Fig-
ure 7.1 shows two examples of discriminator functions between distributions, cor-
responding to the Wasserstein and Gaussian MMD distances. Importantly, GANs
often use losses of this form because the function class F in (7.1) can be approxi-
mated by a discriminator neural network.

This work attempts to help bridge the gap between traditional nonparametric
statistics and these recent advances by studying these two differences from a sta-
tistical minimax perspective. Specifically, under traditional statistical smoothness
assumptions, we identify (i.e., prove matching upper and lower bounds on) mini-
max convergence rates for density estimation under several losses of the form (7.1).
We also discuss some consequences this has for particular neural network imple-
mentations of GANs based on these losses. Finally, we study connections between
minimax rates for explicit and implicit generative modeling, under a plausible no-
tion of risk for implicit generative models.

7.2.1 Adversarial Losses

The quantity (7.1) has been extensively studied, in the case that FD is a reproduc-
ing kernel Hilbert space (RKHS) under the name maximum mean discrepancy (MMD;
(Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012; Tolstikhin, Sriperumbudur,
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FIGURE 7.1: Examples of probability distributions P andQ and corre-
sponding discriminator functions f∗. In (a), P and Q are single Dirac
masses at +1 and −1, respectively, and F is the 1-Lipschitz class, so
that dF is the Wasserstein metric. In (b), P and Q are standard Gaus-
sian and standard Laplace distributions, respectively, and F is a ball
in an RKHS with a Gaussian kernel, so that dF is the Gaussian Maxi-

mum Mean Discrepancy (MMD).

and Muandet, 2017)), and, in a wider context under the name integral probability met-
ric (IPM; (Müller, 1997; Sriperumbudur, Fukumizu, Gretton, Schölkopf, and Lanck-
riet, 2010b; Sriperumbudur, Fukumizu, Gretton, Schölkopf, and Lanckriet, 2012; Bot-
tou, Arjovsky, Lopez-Paz, and Oquab, 2018)). (Arora, Ge, Liang, Ma, and Zhang,
2017) also called (7.1) the FD-distance, or, when FD is a family of functions that
can be implemented by a neural network, the neural network distance. We settled
on the name “adversarial loss” because, without assuming any structure on FD, this
matches the intuition of the expression (7.1), namely that of an adversary selecting
the most distinguishing linear projection f ∈ FD between the true density P and
our estimate P̂ (e.g., by the discriminator network in a GAN).

One can check that dFD : FG × FG → [0,∞] is a pseudometric (i.e., it is non-
negative and satisfies the triangle inequality, and dFD(P,Q) > 0 ⇒ P 6= Q, al-
though dFD(P,Q) = 0 6⇒ P = Q unless FD is sufficiently rich). Many popu-
lar (pseudo)metrics between probability distributions, including Lp (Wasserman,
2006; Tsybakov, 2009), Sobolev (Leoni, 2017; Mroueh, Li, Sercu, Raj, and Cheng,
2017), maximum mean discrepancy (MMD; (Tolstikhin, Sriperumbudur, and Muan-
det, 2017))/energy (Székely, Rizzo, and Bakirov, 2007; Ramdas, Trillos, and Cuturi,
2017), total variation (Villani, 2008), (1-)Wasserstein/Kantorovich-Rubinstein (Kan-
torovich and Rubinstein, 1958; Villani, 2008), Kolmogorov-Smirnov (Kolmogorov,
1933; Smirnov, 1948), and Dudley (Dudley, 1972; Abbasnejad, Shi, and Hengel, 2018)
metrics can be written in this form, for appropriate choices of FD.

The main contribution of this chapter is a statistical analysis of the problem of
estimating a distribution P from n IID observations using the loss dFD , in a minimax
sense over P ∈ FG, for fairly general nonparametric smoothness classes FD and FG.
General upper and lower bounds are given in terms of decay rates of coefficients of
functions in terms of an (arbitrary) orthonormal basis of L2 (including, e.g., Fourier
or wavelet bases); note that this does not require FD or FG to have any inner product
structure, only that FD ⊆ L1. We also discuss some consequences for density esti-
mators based on neural networks (such as GANs), and consequences for the closely
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related problem of implicit generative modeling (i.e., of generating novel samples
from a target distribution, rather than estimating the distribution itself), in terms of
which GANs and VAEs are usually cast.

Chapter Organization: Section 7.3 provides our formal problem statement and
required notation. Section 7.4 discusses related work on nonparametric density es-
timation. Sections 7.5 and 7.6 contain our main theoretical upper and lower bound
results, with proofs in Sections 7.12 and 7.13, respectively. Section 7.7 develops our
general results from Sections 7.5 and 7.6 into concrete minimax convergence rates
for some important special cases. Section 7.8 uses our theoretical results to upper
bound the error of perfectly optimized GANs. Section 7.9 establishes some theoreti-
cal relationships between the convergence of optimal density estimators and optimal
implicit generative models. The final sections provide proofs of our theoretical re-
sults, further applications, further discussion of related and future work on the the-
ory of GANs, and small experiments on simulated data that validate our theoretical
results.

7.3 Problem Statement and Notation

We now provide a formal statement of the problem studied in this chapter in a very
general setting, and then define notation required for our specific results.

Formal Problem Statement: Let P ∈ FG be an unknown probability measure on

a sample space X , from which we observe n IID samples X1:n = X1, ..., Xn
IID∼ P .

We are interested in using the samples X1:n to estimate the measure P , with error
measured using the adversarial loss dFD . Specifically, for various choices of spaces
FD and FG, we seek to bound the minimax rate

M(FD,FG) := inf
P̂

sup
P∈FG

E
X1:n

[
dFD

(
P, P̂ (X1:n)

)]
of estimating distributions assumed to lie in a class FG, where the infimum is taken
over all estimators P̂ (i.e., all (potentially randomized) functions P̂ : X n → FG). We
will discuss both the case when FG is known a priori and the adaptive case when it is
not.

7.3.1 Notation

For a non-negative integer n, we use [n] := {1, 2, ..., n} to denote the set of posi-
tive integers at most n. For sequences {an}n∈N and {bn}n∈N of non-negative reals,
an . bn and, similarly bn & an, indicate the existence of a constant C > 0 such that
lim supn→∞

an
bn
≤ C. an � bn indicates an . bn . an. For functions f : Rd → R, we

write
lim
‖z‖→∞

f(z) := sup
{zn}n∈N:‖zn‖→∞

lim
n→∞

f(zn),

where the supremum is taken over all diverging Rd-valued sequences. Note that,
by equivalence of finite-dimensional norms, the exact choice of the norm ‖ · ‖ does
not matter here. We will also require summations of the form

∑
z∈Z f(z) in cases

where Z is a (potentially infinite) countable index set and {f(z)}z∈Z is summable
but not necessarily absolutely summable. Therefore, to ensure that the summation
is well-defined, the order of summation will need to be specified, depending on the
application (as in, e.g., Section 7.7).
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Fix the sample space X = [0, 1]d to be the d-dimensional unit cube, over which λ
denotes the usual Lebesgue measure. Given a measurable function f : X → R, let,
for any Borel measure µ on X , p ∈ [1,∞], and L > 0,

‖f‖Lpµ :=

(∫
X
|f |p dµ

)1/p

and Lpµ(L) :=
{
f : X → R

∣∣∣ ‖f‖Lpµ < L
}

(taking the appropriate limit if p =∞) denote the Lebesgue norm and ball of radius
L, respectively.

Fix an orthonormal basis B = {φz}z∈Z of L2
λ indexed by a countable family Z .

To allow probability measures P without densities (i.e., P 6� µ), we assume each
basis element φz : X → R is a bounded function, so that P̃z := EX∼P [φz(X)] is well-
defined. For constants L > 0 and p ≥ 1 and real-valued net {az}z∈Z , our results
pertain to generalized ellipses of the form

Hp,a(L) =

f ∈ L1(X ) :

(∑
z∈Z

apz|f̃z|p
)1/p

≤ L

 .

(where f̃z :=
∫
X fφz dµ is the zth coefficient of f in the basis B). We sometimes omit

dependence on L (e.g., Hp,a = Hp,a(L)) when its value does not matter (e.g., when
discussing rates of convergence).

A particular case of interest is the scale of the Sobolev spaces defined for s, L ≥ 0
and p ≥ 1 by

Ws,p(L) =

f ∈ L1(X ) :

(∑
z∈Z
|z|sp|f̃z|p

)1/p

≤ L

 .

For example, when B is the standard Fourier basis and s is an integer, for a constant
factor c depending only on s and the dimension d,

Ws,p(cL) :=

{
f ∈ Lpλ

∣∣∣∣∥∥∥f (s)
∥∥∥
Lpλ

< L

}
corresponds to the natural standard smoothness class of Lpλ functions having sth-
order (weak) derivatives f (s) in Lpλ(L) (Leoni, 2017)).

7.4 Related Work

Our results apply directly to many of the losses that have been used in GANs, includ-
ing 1-Wasserstein distance (Arjovsky, Chintala, and Bottou, 2017; Gulrajani, Ahmed,
Arjovsky, Dumoulin, and Courville, 2017), MMD (Li, Chang, Cheng, Yang, and Póc-
zos, 2017), Sobolev distances (Mroueh, Li, Sercu, Raj, and Cheng, 2017), and the
Dudley metric (Abbasnejad, Shi, and Hengel, 2018). As discussed in Section 7.15.2,
slightly different assumptions are required to obtain results for the Jensen-Shannon
divergence (used in the original GAN formulation of (Goodfellow, Pouget-Abadie,
Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio, 2014)) and other f -divergences (Nowozin,
Cseke, and Tomioka, 2016).

Given their generality, our results relate to many prior works on distribution
estimation, including classical work in nonparametric statistics and empirical pro-
cess theory, as well as more recent work studying Wasserstein distances and MMD.
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Here, we briefly survey known results for these problems. There have also been a
few other statistical analyses of the GAN framework; we discuss these works further
in Section 7.11.
L2
λ distances: Classical work on nonparametric statistics has typically focused

on the problem of smooth density estimation under L2
λ loss, corresponding the ad-

versarial loss dFD with FD = L2
λ(LD) (the Hölder dual) of L2 (Wasserman, 2006;

Tsybakov, 2009). In this case, when FG = Wt,2(LG) is a Sobolev class, then the min-
imax rate is typically M(FD,FG) � n−

t
2t+d , matching the rates given by our main

results.
Maximum Mean Discrepancy (MMD): WhenFD is a reproducing kernel Hilbert

space (RKHS), the adversarial loss dFD has been widely studied under the name
maximum mean discrepancy (MMD) (Gretton, Borgwardt, Rasch, Schölkopf, and Smola,
2012; Tolstikhin, Sriperumbudur, and Muandet, 2017). When the RKHS kernel is
translation-invariant, one can express FD in the form H2,a, where a is determined
by the spectrum of the kernel, and so our analysis holds for MMD losses with
translation-invariant kernels (see Example 11). To the best of our knowledge, min-
imax rates for density estimation under MMD loss have not been established in
general; our analysis suggests that density estimation under an MMD loss is es-
sentially equivalent to the problem of estimating kernel mean embeddings studied
in (Tolstikhin, Sriperumbudur, and Muandet, 2017), as both amount to density es-
timation while ignoring bias, and both typically have a parametric n−1/2 minimax
rate. Note that the related problems of estimating MMD itself, and of using it in sta-
tistical tests for homogeneity and dependence, have received extensive theoretical
treatment (Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012; Ramdas, Reddi,
Póczos, Singh, and Wasserman, 2015).

Wasserstein Distances: When FD = W1,∞(L) is the class of 1-Lipschitz func-
tions, dFD is equivalent to the (order-1) Wasserstein (also called earth-mover’s or Kantorovich-
Rubinstein) distance. In this case, when FG contains all Borel measurable distribu-
tions on X , minimax bounds have been established under very general conditions
(essentially, when the sample space X is an arbitrary totally bounded metric space)
in terms of covering numbers of X (Weed and Bach, 2017; Singh and Póczos, 2018;
Lei, 2018). In the particular case that X is a bounded subset of Rd of full dimension
(i.e., having non-empty interior, comparable to the case X = [0, 1]d that we study
here), these results imply a minimax rate of M(FD,FG) = n−min{ 1

2
, 1
d}, matching

our rates. Notably, these upper bounds are derived using the empirical distribution,
which cannot benefit from smoothness of the true distribution (see (Weed and Bach,
2017)). At the same time, it is obvious to generalize smoothing estimators to sample
spaces that are not sufficiently nice subsets of Rd.

Sobolev IPMs: The closest work to the present is (Liang, 2017), which we believe
was the first work to analyze how convergence rates jointly depend on (Sobolev)
smoothness restrictions on both FD and FG. Specifically, for Sobolev spaces FD =
Ws,p and FG =Wt,q with p, q ≥ 2 (compare our Example 10), they showed

n−
s+t
2t+d .M(Ws,2,Wt,2) . n

− s+t
2(s+t)+d . (7.2)

Our main results in Sections 7.5 and 7.6 improve on this in two main ways. First, our
results generalize to and are tight for many spaces besides Sobolev spaces. Examples
include when FD is a reproducing kernel Hilbert space (RKHS) with translation-
invariant kernel, or when FG is the class of all Borel probability measures. Our
bounds also allow other (e.g., wavelet) estimators, whereas the bounds of (Liang,



7.5. Upper Bounds for Orthogonal Series Estimators 121

2017) are for the (uniformly L∞λ -bounded) Fourier basis. Second, the lower and up-
per bounds in (7.2) diverge by a factor polynomial in n. We tighten the upper bound
to match the lower bound, identifying, for the first time, minimax rates for many
problems of this form (e.g., M(Ws,2,Wt,2) � n−

s+t
2t+d in the Sobolev case above). Our

analysis has several interesting implications:
1. When s > d/2, the convergence becomes parametric: M(W s,2,FG) � n−1/2,

for any class of distributions FG. This highlights that the loss dFD is quite weak
for large s, and matches known minimax results for the Wasserstein case s =
1 (Canas and Rosasco, 2012; Singh and Póczos, 2018).

2. Our upper bounds, as in (Liang, 2017), are for smoothing estimators (namely,
the orthogonal series estimator 7.3). In contrast, previous analyses of Wasser-
stein loss focused on convergence of the (unsmoothed) empirical distribution
P̂E to the true distribution, which typically occurs at rate of � n−1/d + n−1/2,
where d is the intrinsic dimension of the support of P (Canas and Rosasco,
2012; Weed and Bach, 2017; Singh and Póczos, 2018). Moreover, if FG includes
all Borel probability measures, this rate is minimax optimal (Singh and Póc-
zos, 2018). The loose upper bound of (Liang, 2017) left open the questions of
whether (when s < d/2) a very small amount (t ∈

(
0, 2s2

d−2s

]
) of smoothness im-

proves the minimax rate and, more importantly, whether smoothed estimators
are outperformed by P̂E in this regime. Our results imply that, for s < d/2, the
minimax rate strictly improves with smoothness t, and that, as long as the sup-
port of P has full dimension, the smoothed estimator always converges faster
than P̂E . An important open problem is to simultaneously leverage when P is
smooth and has support of low intrinsic dimension; many data (e.g., images)
likely enjoy both these properties.

3. (Liang, 2017) suggested over-smoothing the estimate (the smoothing parameter

ζ discussed in Equation (7.3) below was set to ζ � n
1

2(s+t)+d ) compared to the
case of L2

λ loss, and hence it was not clear how to design estimators that adapt to
unknown smoothness under losses dW s,p . We show that the optimal smoothing
(ζ � n

1
2t+d ) under dW s,p loss is identical to that under L2

λ loss, and we use this
to design an adaptive estimator (see Corollary 56).

4. Our bounds imply improved performance bounds for optimized GANs, dis-
cussed in Section 7.8.

7.5 Upper Bounds for Orthogonal Series Estimators

This section gives upper bounds on the adversarial risk of the following density
estimator. For any finite set Z ⊆ Z , let P̂Z be the truncated series estimate

P̂Z :=
∑
z∈Z

P̂zφz, where, for any z ∈ Z, P̂z :=
1

n

n∑
i=1

φz(Xi). (7.3)

Z is a tuning parameter that typically corresponds to a smoothing parameter; for
example, when B is the Fourier basis and Z = {z ∈ Zd : ‖z‖∞ ≤ ζ} for some
ζ > 0, P̂Z is equivalent to a kernel density estimator using a sinc product kernel
Kh(x) =

∏d
j=1

2
h

sin(2πx/h)
2πx/h with bandwidth h = 1/ζ (Owen, 2007).

We now present our main upper bound on the minimax rate of density estima-
tion under adversarial losses. The upper bound is given by the orthogonal series
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estimator given in Equation (7.3), but we expect kernel and other standard linear
density estimators to converge at the same rate.

Theorem 53 (Upper Bound). Suppose that µ(X ) <∞ and there exist constantsLD, LG >
0, real-valued nets {az}z∈Z , {bz}z∈Z such thatFD = Hp,a(X , LD) andFG = Hq,b(X , LG),
where p, q ≥ 1. Let p′ = p

p−1 denote the Hölder conjugate of p. Then, for any P ∈ FG,

E
X1:n

[
dFD

(
P, P̂

)]
≤ LD

cp′√
n

∥∥∥∥∥
{
‖φz‖L∞P
az

}
z∈Z

∥∥∥∥∥
p′

+ LDLG

∥∥∥∥∥
{

1

azbz

}
z∈Z\Z

∥∥∥∥∥
1

1−1/p−1/q

(7.4)

The two terms in the bound (7.4) demonstrate a bias-variance tradeoff, in which
the first term (variance) increases with the truncation set Z and is typically indepen-
dent of the class FG of distributions, while the second term (bias) decreases with Z
at a rate depending on the complexity of FG.

Corollary 54 (Sufficient Conditions for Parametric Rate). Consider the setting of Theo-
rem 53. If

A :=
∑
z∈Z

‖φz‖2L∞P
a2
z

<∞ and max {az, bz} → ∞.

whenever ‖z‖ → ∞, then, the minimax rate is parametric; specifically, M(FD,FG) ≤
LD
√
A/n. In particular, letting cz := supx∈X |φz(x)| for each z ∈ Z , this occurs whenever∑

z∈Z
c2z
a2
z
<∞.

In many contexts (e.g., if P � λ and λ� P ), the simpler condition
∑

z∈Z
c2z
a2
z
<∞

suffices. The first, and slightly weaker condition in terms of ‖φz‖2L∞P is useful when
we restrict FG; e.g., if B is the Haar wavelet basis and FG contains only discrete
distributions supported on at most k points, then ‖φi,j‖2L∞P = 0 for all but k values of
j ∈ [2i], at each resolution i ∈ N. The assumption max

{
lim‖z‖→∞ az, lim‖z‖→∞ bz

}
=

∞ is quite mild; for example, the Riemann-Lebesgue lemma and the assumption
that FD is bounded in L∞λ ⊆ L1

λ together imply that this condition always holds if B
is the Fourier basis.

7.6 Minimax Lower Bound

In this section, we lower bound the minimax risk M(FD,FG) of distribution esti-
mation under dFD loss over FG, for the case when FD = Hp,a and FG := Hq,b are
generalized ellipses. As we show in some examples in Section 7.7, our lower bound
rate matches our upper bound rate in Theorem 53 for many spaces FD and FG of
interest. Our lower bound also suggests that the assumptions in Corollary 54 are
typically necessary to guarantee the parametric convergence rate n−1/2.

Theorem 55 (Minimax Lower Bound). Fix X = [0, 1]d, and let p0 denote the uniform
density (with respect to Lebesgue measure) onX . Suppose {p0}∪{φz}z∈Z is an orthonormal
basis in L2

µ, and {az}z∈Z and {bz}z∈Z are two real-valued nets. Let LD, LG ≥ 0 and
p, q ≥ 2. For any Z ⊆ Z , let

AZ := |Z|1/2 sup
z∈Z

az and BZ := |Z|1/2 sup
z∈Z

bz.
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Then, for FD = Hp,a(LD) and FG := Hq,b(LG), for any Z ⊆ Z satisfying

BZ ≥ 16LG

√
n

log 2
and 2

LG
BZ

∑
z∈Z
‖φz‖L∞µ ≤ 1, (7.5)

we have M(FD,FG) ≥ LGLD|Z|
64AZBZ

=
LGLD

64 (supz∈Z az) (supz∈Z bz)
.

As in most minimax lower bounds, our proof relies on constructing a finite set ΩG

of “worst-case” densities in FG, lower bounding the distance dFD over ΩG, and then
letting elements of ΩG shrink towards the uniform distribution p0 at a rate such that
the average information (here, Kullback-Leibler) divergence between each p ∈ ΩG

and p0 does not grow with n. The first condition in (7.5) ensures that the information
divergence between each p ∈ ΩG and p0 is sufficiently small, and typically results in
tuning of Z identical (in rate) to its optimal tuning in the upper bound (Theorem 53).

The second condition in (7.5) is needed to ensure that the “worst-case” densities
we construct are everywhere non-negative. Hence, this condition is not needed for
lower bounds in the Gaussian sequence model, as in Theorem 2.3 of (Liang, 2017).
However, failure of this condition (asymptotically) corresponds to the breakdown
point of the asymptotic equivalence between the Gaussian sequence model and the
density estimation model in the regime of very low smoothness (e.g., in the Sobolev
setting, when t < d/2; see (Brown and Zhang, 1998)), and so finer analysis is needed
to establish lower bounds here.

7.7 Examples

In this section, we apply our bounds from Sections 7.5 and 7.6 to compute concrete
minimax convergence rates for two examples choices ofFD andFG, namely Sobolev
spaces and reproducing kernel Hilbert spaces.

For the purpose of this section, suppose that X = [0, 2π]d, Z = Zd, and, for each
z ∈ Z , φz is the zth standard Fourier basis element given by φz(x) = ei〈z,x〉 for all
x ∈ X . In this case, we will always choose the truncation set Z to be of the form
Z := {z ∈ Z : ‖z‖∞ ≤ ζ}, for some ζ > 0, so that |Z| ≤ ζd. Moreover, for every
z ∈ Z, ‖φz‖L∞µ = 1, and hence CZ ≤ 1.

Example 10 (Sobolev Spaces). Suppose that, for some s, t ≥ 0, az = ‖z‖s∞ and bz =

‖z‖t∞. Then, setting ζ = n
1

2t+d in Theorems 53 and 55 gives that there exist constants
C > c > 0 such that

cn−min{ 1
2
, s+t
2t+d} ≤M

(
Ws,2,Wt,2

)
≤ Cn−min{ 1

2
, s+t
2t+d}. (7.6)

Combining the observation that the s-Hölder space Ws,∞ ⊆ Ws,2 with the lower
bound (over Ws,∞) in Theorem 3.1 of (Liang, 2017), we have that (7.6) also holds
whenWs,2 is replaced withWs,p for any p ∈ [2,∞] (e.g., in the case of the Wasserstein
metric dW1,∞).

So far, we have assumed the smoothness t of the true distribution P is known,
and used that to tune the parameter ζ of the estimator. However, in reality, t is not
known. In the next result, we leverage the fact that the rate-optimal choice ζ = n

1
2t+d

above does not rely on the loss parameters s, together with Theorem 53 to construct
an adaptively minimax estimator, i.e., one that is minimax and fully-data dependent.
There is a large literature on adaptive nonparametric density estimation under L2

µ
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loss; see (Efromovich, 2010) for accessible high-level discussion and (Goldenshluger
and Lepski, 2014) for a technical but comprehensive review.

Corollary 56 (Adaptive Upper Bound for Sobolev Spaces). There exists an adaptive
choice ζ̂ : X n → N of the hyperparameter ζ (independent of s, t), such that, for any s, t ≥ 0,
there exists a constant C > 0 (independent of n), such that

sup
P∈Wt,2

E
X1:n

IID∼ P

[
dWs,2

(
P, P̂Z

ζ̂(X1:n)

)]
≤M

(
Ws,2,Wt,2

)
(7.7)

The actual construction of the adaptive ζ̂ is presented in Section 7.14, but, in brief,
it is a standard construction based on leave-one-out cross-validation under L2

µ loss
which is known (e.g., see Sections 7.2.1 and 7.5.2 of (Massart, 2007)) to be adaptively
minimax under L2

µ loss. Using the fact that our upper bound Theorem 53 uses a
choice of ζ is independent of the loss parameter s, we show that the dWs,∞ risk of P̂ζ
can be factored into its L2

µ risk and a component (ζ−s) that is independent of t. Since
L2
µ risk can be rate-minimized in independently of t, it follows that the dWs,∞ risk

can be rate-minimized independently of t. Adaptive minimaxity then follows from
Theorem 55.

Example 11 (Reproducing Kernel Hilbert Space/MMD Loss). SupposeHk is a repro-
ducing kernel Hilbert space (RKHS) with reproducing kernel k : X ×X → R (Aron-
szajn, 1950; Berlinet and Thomas-Agnan, 2011). If k is translation invariant (i.e., there
exists κ ∈ L2

µ such that, for all x, y ∈ X , k(x, y) = κ(x− y)), then Bochner’s theorem
(see, e.g., Theorem 6.6 of (Wendland, 2004)) implies that, up to constant factors,

Hk(L) := {f ∈ Hk : ‖f‖Hk ≤ L} =

{
f ∈ Hk :

∑
z∈Z
|κ̃z|2|f̃z|2 < L2

}
.

Thus, in the setting of Theorem 53, we have Hk = H2,a, where az = |κ̃z| satisfies∑
z∈Z a

−2
z = ‖κ‖2L2

µ
< ∞. Corollary 54 then gives M(Hk(LD),FG) ≤ LD‖κ‖L2

µ
n−1/2

for any class FG. It is well-known known that MMD can always be estimated at
the parametric rate n−1/2 (Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012);
however, to the best of our knowledge, only recently has it been shown that any
probability distribution can be estimated at the rate n−1/2 under MMD loss(Sriperumbudur,
2016), emphasizing the fact that MMD is a very weak metric. This has important
implications for applications such as two-sample testing (Ramdas, Reddi, Póczos,
Singh, and Wasserman, 2015).

7.8 Consequences for Generative Adversarial Neural Networks
(GANs)

This section discusses implications of our minimax bounds for GANs. Neural net-
works in this section are assumed to be fully-connected, with rectified linear unit
(ReLU) activations. (Liang, 2017) used their upper bound result (7.2) to prove a sim-
ilar theorem, but, since their upper bound was loose, the resulting theorem was also
loose. The following results are immediate consequences of our improvement (The-
orem 53) over the upper bound (7.2) of (Liang, 2017), and so we refer to that paper
for the proof. Key ingredients are an oracle inequality proven in (Liang, 2017), an
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upper bound such as Theorem 53, and bounds of (Yarotsky, 2017) on the size of a
neural network needed to approximate functions in a Sobolev class.

In the following, FD denotes the set of functions that can be encoded by the
discriminator network and FG denotes the set of distributions that can be encoded
by the generator network. Pn := 1

n

∑n
i=1 1{Xi} denotes the empirical distribution of

the observed data X1:n
IID∼ P .

Theorem 57 (Improvement of Theorem 3.1 in Liang (2017)). Let s, t > 0, and fix a
desired approximation accuracy ε > 0. Then, there exists a GAN architecture, in which
1. the discriminator FD has at mostO(log(1/ε)) layers andO(ε−d/s log(1/ε)) parameters,
2. and the generator FG has at mostO(log(1/ε)) layers andO(ε−d/t log(1/ε)) parameters,

such that, if P̂∗(X1:n) := argmin
P̂∈FG

dFD

(
Pn, P̂

)
, is the optimized GAN estimate of P ,

then sup
P∈Wt,2

E
X1:n

[
dWs,2

(
P, P̂∗(X1:n)

)]
≤ C

(
ε+ n−min{ 1

2
, s+t
2t+d}

)
.

The discriminator and generator in the above theorem can be implemented as
described in (Yarotsky, 2017). The assumption that the GAN is perfectly optimized
may be strong; see (Nagarajan and Kolter, 2017; Liang and Stokes, 2018) for discus-
sion of this.

Though we do not present this result here, we can similarly improve the upper
bound of (Liang, 2017) (their Theorem 3.2) for very deep neural networks, further
improving on the previous state-of-the-art bounds of (Anthony and Bartlett, 2009)
(which did not leverage smoothness assumptions on P ).

7.9 Minimax Comparison of Explicit and Implicit Generative
Models

In this section, we draw formal connections between our work on density estima-
tion (explicit generative modeling) and the problem of implicit generative modeling
under an appropriate measure of risk. In the sequel, we fix a class FG of probability
measures on a sample space X and a loss function ` : FG × FG → [0,∞] measur-
ing the distance of an estimate P̂ from the true distribution P . ` need not be an
adversarial loss dFD , but our discussion does apply to all ` of this form.

7.9.1 A Minimax Framework for Implicit Generative Models

Thus far, we have analyzed the minimax risk of density estimation, namely

MD(FG, `, n) = inf
P̂

sup
P∈FG

RD(P, P̂ ), where RD(P, P̂ ) =E
X1:n

IID∼ P

[
`(P, P̂ (X1:n))

]
(7.8)

denotes the density estimation risk of P̂ at P and the infimum is taken over all esti-
mators (i.e., (potentially randomized) functions P̂ : X n → FG). Whereas density
estimation is a classical statistical problem to which we have already contributed
novel results, our motivations for studying this problem arose from a desire to bet-
ter understand recent work on implicit generative modeling.

Implicit generative models, such as GANs (Arjovsky, Chintala, and Bottou, 2017;
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Ben-
gio, 2014) and VAEs (Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra,
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2014), address the problem of sampling, in which we seek to construct a generator that
produces novel samples from the distribution P (Mohamed and Lakshminarayanan,
2016). In our context, a generator is a function X̂ : X n × Z → X that takes in n IID
samples X1:n ∼ P and a source of randomness (a.k.a., latent variable) Z ∼ QZ with
known distribution QZ (independent of X1:n) on a space Z , and returns a novel
sample X̂(X1:n, Z) ∈ X .

The evaluating the performance of implicit generative models, both in theory
and in practice, is difficult, with solutions continuing to be proposed Sutherland,
Tung, Strathmann, De, Ramdas, Smola, and Gretton, 2017, some of which have
proven controversial. Some of this controversy stems from the fact that many of
the most straightforward evaluation objectives are optimized by a trivial generator
that ‘memorizes’ the training data (e.g., X̂(X1:n, Z) = XZ , where Z is uniformly dis-
tributed on [n]). One objective that can avoid this problem is as follows. For simplic-
ity, fix the distributionQZ of the latent random variableZ ∼ QZ (e.g.,QZ = N (0, I)).

For a fixed training set X1:n
IID∼ P and latent distribution Z ∼ QZ , we define the im-

plicit distribution of a generator X̂ as the conditional distribution P
X̂(X1:n,Z)|X1:n

over

X of the random variable X̂(X1:n, Z) given the training data. Then, for any P ∈ FG,
we define the implicit risk of X̂ at P by

RI(P, X̂) := E
X1:n∼P

[
`(P, P

X̂(X1:n,Z)|X1:n
)
]
.

We can then study the minimax risk of sampling,

MI(FG, `, n) := inf
X̂

sup
P∈FG

RI(P, X̂).

A few remarks about MI(F , `, n): First, we implicitly assumed `(P, P
X̂(X1:n,Z)|X1:n

)

is well-defined, which is not obvious unless P
X̂(X1:n,Z)

∈ FG. We discuss this as-

sumption further below. Second, since the risk RI(P, X̂) depends on the unknown
true distribution P , we cannot calculate it in practice. Third, for the same reason
(because RP (P, X̂) depends directly on P rather than particular data X1:n), it detect
lack-of-diversity issues such as mode collapse. As we discuss later, these latter two
points are distinctions from the recent work of (Arora, Ge, Liang, Ma, and Zhang,
2017) on generalization in GANs.

7.9.2 Comparison of Explicit and Implicit Generative Models

Algorithmically, sampling is a very distinct problem from density estimation; for
example, many computationally efficient Monte Carlo samplers rely on the fact that
a function proportional to the density of interest can be computed much more quickly
than the exact (normalized) density function (Chib and Greenberg, 1995). In this
section, we show that, given unlimited computational resources, the problems of
density estimation and sampling are equivalent in a minimax statistical sense. Since
exactly minimax estimators (argmin

P̂
supP∈FG RD(P, P̂ )) often need not exist, the

following weaker notion is useful for stating our results:

Definition 58 (Nearly Minimax Sequence). A sequence {P̂k}k∈N of density estima-
tors (resp., {X̂k}k∈N of generators) is called nearly minimax overFG if limk→∞ supP∈FG RP,D(P̂k) =

MD(FG, `, n) (resp., limk→∞ supP∈FG RP,I(X̂k) = MI(FG, `, n)).
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The following theorem identifies sufficient conditions under which, in the sta-
tistical minimax framework described above, density estimation is no harder than
sampling. The idea behind the proof is as follows: If we have a good sampler X̂ (i.e.,
with RI(X̂) small), then we can draw m ‘fake’ samples from X̂ . We can use these
‘fake’ samples to construct a density estimate P̂ of the implicit distribution of X̂ such
that, under the technical assumptions below, RD(P̂ )−RI(X̂)→ 0 as m→∞.

Theorem 59 (Conditions under which Density Estimation is Statistically no harder
than Sampling). Let FG be a family of probability distributions on a sample space X . Sup-
pose

(A1) ` : P × P → [0,∞] is non-negative, and there exists C4 > 0 such that, for all
P1, P2, P3 ∈ FG, `(P1, P3) ≤ C4 (`(P1, P2) + `(P2, P3)).

(A2) MD(FG, `,m)→ 0 as m→∞.
(A3) For all m ∈ N, we can draw m IID samples Z1, ..., Zm

IID∼ QZ of the latent variable Z.
(A4) there exists a nearly minimax sequence of samplers X̂k : X n × Z → X such that, for

each k ∈ N, almost surely over X1:n, P
X̂k(X1:n,Z)|X1:n

∈ FG.
Then, MD(FG, `, n) ≤ C4MI(FG, `, n).

Assumption (A1) is a generalization of the triangle inequality (and reduces to
the triangle inequality when C4 = 1). This weaker assumption applies, for exam-
ple, when ` is the Jensen-Shannon divergence (with C4 = 2) used in the original
GAN formulation of (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair,
Courville, and Bengio, 2014), even though this does not satisfy the triangle inequal-
ity (Endres and Schindelin, 2003)). Assumption (A2) is equivalent to the existence of
a uniformly `-risk-consistent estimator over FG, a standard property of most distri-
bution classes FG over which density estimation is studied (e.g., our Theorem 53).

Assumption (A3) is a natural design criterion of implicit generative models; usu-
ally, QZ is a simple parametric distribution such as a standard normal.

Finally, Assumption (A4) is the most mysterious, because, currently, little is known
about the minimax theory of samplers when FG is a large space. On one hand, since
MI(FG, `, n) is an infimum over X̂ , Theorem 59 continues to hold if we restrict the
class of samplers (e.g., to those satisfying Assumption (A4) or those we can com-
pute). On the other hand, even without restricting X̂ , this assumption may not be
too restrictive, because nearly minimax samplers are necessarily close to P ∈ FG.
For example, if FG contains only smooth distributions but X̂ is the trivial empiri-
cal sampler described above, then `(P, P

X̂
) should be large and X̂ is unlikely to be

minimax optimal.
Finally, in practice, we often do not know estimators that are nearly minimax

for finite samples, but may have estimators that are rate-optimal (e.g., as given by
Theorem 53), i.e., that satisfy

C := lim sup
n→∞

supP∈FG RI(P, X̂)

MI(FG, `, n)
<∞.

Under this weaker assumption, it is straightforward to modify our proof to conclude
that

lim sup
n→∞

MD(FG, `, n)

MI(FG, `, n)
≤ C4C.

The converse result (MD(FG, `, n) ≥MI(FG, `, n)) is simple to prove in many cases,
and is related to the well-studied problem of Monte Carlo sampling (Robert, 2004);
we discuss this briefly later.
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7.10 Conclusions

Given the recent popularity of implicit generative models in many applications, it is
important to theoretically understand why these models appear to outperform clas-
sical methods for similar problems. This chapter provided new minimax bounds
for density estimation under adversarial losses, both with and without adaptivity to
smoothness, and gave several applications, including both traditional statistical set-
tings and perfectly optimized GANs. We also gave simple conditions under which
minimax bounds for density estimation imply bounds for the problem of implicit
generative modeling, suggesting that sampling is typically not statistically easier
than density estimation. Thus, for example, the strong curse of dimensionality that
is known to afflict to nonparametric density estimation Wasserman (2006) should
also limit the performance of implicit generative models such as GANs. Section 7.17
describes several specific avenues for further investigation, including whether the
curse of dimensionality can be avoided when data lie on a low-dimensional mani-
fold.

7.11 Further Related Work

As noted previously, our problem setting is quite general, and thus overlaps with
several previous settings that have been studied. First, we note the analysis of (Liu,
Bousquet, and Chaudhuri, 2017), which also studied convergence of distribution
estimation under adversarial losses. Considering a somewhat broader class of non-
metric losses (including, e.g., Jensen-Shannon divergence), which they call adversar-
ial divergences, (Liu, Bousquet, and Chaudhuri, 2017) provided consistency results
(in distribution) for a number of GAN formulations, assuming convergence of the
min-max GAN optimization problem to a generator-optimal equilibrium. However,
they did not study rates of convergence.

Our results can also be viewed as a refinement of several results from empirical
process and learning theory, especially the wealth of literature on the case where FD
is a Glivenko-Cantelli (GC, a.k.a., Vapnik-Chervonenkis (VC)) class (Pollard, 1990).
Corollary 54 can be interpreted as showing that spaces FD that are sufficiently small
in terms of orthonormal basis expansions are n−1/2-uniformly GC/VC classes (Alon,
Ben-David, Cesa-Bianchi, and Haussler, 1997; Vapnik and Chervonenkis, 2015). In
particular, this gives a simple functional-analytic proof of this property for the gen-
eral case when FD is a ball in a translation-invariant RKHS. On the other hand,
some related results, cast in terms of fat-shattering dimensions (Mendelson, 2002;
Dziugaite, Roy, and Ghahramani, 2015), appear to lead to slower rates for RKHSs.

Glivenko-Cantelli classes are defined without regards to the class FG of possible
distributions. However, the more interesting consequences of our results are for
the case that FG is restricted, as in Theorem 53. In Example 10 this allowed us to
characterize the interaction between smoothness constraints on the discriminator
class FD and the generator class FG, showing in particular, that, when FD is large,
restricting FG improves convergence rates. Aside for the results of (Liang, 2017) and
many results for the specific case FD = L2

λ, we do not know of any results that show
this.

Several prior works have studied the closely related problem of estimating cer-
tain adversarial metrics, includingL2 distance (Krishnamurthy, Kandasamy, Poczos,
and Wasserman, 2015), MMD (Gretton, Borgwardt, Rasch, Schölkopf, and Smola,
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2012), Sobolev distances (Singh, Sriperumbudur, and Póczos, 2018b), and others (Sripe-
rumbudur, Fukumizu, Gretton, Schölkopf, and Lanckriet, 2012). In some cases, these
metrics can themselves be estimated far more efficiently than the underlying dis-
tribution under that loss, and these estimators have various applications including
two-sample/homogeneity and independence testing (Anderson, Hall, and Tittering-
ton, 1994; Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012; Ramdas, Reddi,
Póczos, Singh, and Wasserman, 2015), and distributional (Sutherland, 2016), trans-
fer (Du, Koushik, Singh, and Póczos, 2017), and transductive (Quadrianto, Petterson,
and Smola, 2009) learning.

There has also been some work studying the min-max optimization problem in
terms of which GANs are typically cast (Nagarajan and Kolter, 2017; Liang and
Stokes, 2018). However, in this work, as in (Liu, Bousquet, and Chaudhuri, 2017;
Liang, 2017), we implicitly assume the optimization procedure has converged to
a generator-optimal equilibrium. Another work that studies adversarial losses is
(Bottou, Arjovsky, Lopez-Paz, and Oquab, 2018), which focuses on a comparison of
Wasserstein distance and MMD in the context of implicit generative modeling.

7.11.1 Other statistical analyses of GANs

Our results are closely related to some previous work studying the generalization
error of GANs under MMD (Dziugaite, Roy, and Ghahramani, 2015) or Jensen-
Shannon divergence, Wasserstein, or other adversarial losses (Arora, Ge, Liang, Ma,
and Zhang, 2017).

Assume, for simplicity, that ` satisfies a weak triangle inequality (Assumption (A1)
above), and let P denote the true distribution from which the data are drawn IID.
Then, we can bound the true loss `(P, P̂ ) of an estimator P̂ in terms of the approxi-
mation error `(P, P∗) (corresponding to bias) and generalization error `(P∗, P̂ ) (i.e.,
corresponding to variance):

`(P, P̂ ) ≤ C4
(
`(P, P∗) + `(P∗, P̂ )

)
,

where P∗ := argmin
Q∈F̂ `(P,Q) denotes the optimal approximation of P in some

restricted class F̂ ⊆ FG of estimators in which P̂ lies.
Bounding the approximation error `(P, P∗) typically requires restricting the space

FG in which P lies. Theorem 1 of (Dziugaite, Roy, and Ghahramani, 2015) and The-
orem 3.1 of (Arora, Ge, Liang, Ma, and Zhang, 2017) focus on bounding the general-
ization error `(P∗, P̂ ), and thus avoid making such assumptions on P . However,
our Theorem 53 shows that, when FD is sufficiently small (e.g., an RKHS, as in
(Dziugaite, Roy, and Ghahramani, 2015)), ` = dFD is so weak that `(P, P∗) can be
bounded even when FG includes all probability measures. In particular, while (Dz-
iugaite, Roy, and Ghahramani, 2015) gave only high-probability bounds of order
n−1/2 on the generalization error `(P∗, P̂ ) in terms of the fat-shattering dimension of
the RKHS, we show that, for any RKHS with a translation-invariant kernel, the total
risk E[`(P, P̂ )] can be bounded at the parametric rate of n−1/2.

(Arora, Ge, Liang, Ma, and Zhang, 2017) also showed that, if F̂ is too large
(specifically, if F̂ contains the empirical distribution), then the generalization error
`(P∗, P̂ ) (or, specifically, an empirical estimate thereof) need not vanish as the sam-
ple size increases, or, in the case of Wasserstein distance, if the dimension d grows
faster than logarithmically with the sample size n. Our Theorem 53 showed that,
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if F̂ contains only (e.g., orthogonal series) estimates of a fixed smoothness (e.g., or-
thogonal series estimates with a fixed ζ), then the generalization error decays at the
rate � ζd/2n−1/2 (the first term on the right-hand side of 7.4), so that d ∈ o(log n) is
still necessary1. Our minimax lower bound 55 suggests that, without making signif-
icantly stronger assumptions, we cannot hope to avoid this curse of dimensionality,
at least without sacrificing approximation error (bias).

7.12 Proof of Upper Bound

In this section, we prove our main upper bound, Theorem 53. We begin with a
simple lemma showing that, under mild assumptions, we can write an adversarial
loss in terms of an L2

λ basis expansion.

Lemma 60 (Basis Expansion of Adversarial Loss). Consider a class FD of discriminator
functions, two probability distributions P and Q, and an orthonormal basis {φz}z∈Z of
L2
λ(X ). Moreover, suppose that either of the following conditions holds:

1. P,Q� λ have densities p, q ∈ L2
λ.

2. For every f ∈ FD, the expansion of f in the basis B converges uniformly (over X ) to
f . That is,

lim
Z↑Z

sup
x∈X

∣∣∣∣∣f(x)−
∑
z∈Z

f̃z(x)φz(x)

∣∣∣∣∣→ 0.

Then, we can expand the adversarial loss dFD over P as

dFD (P,Q) = sup
f∈FD

∑
z∈Z

f̃z

(
P̃z − Q̃z

)
.

Condition 1 above is quite straightforward, and would be taken for granted in
most classical non-parametric analysis. When B is the Fourier basis, the assumption
that p, q ∈ Lrµ for r = 2 can be weakened to any r > 1 using Hölder’s inequality
together with the facts that f ∈ Lr′ and that Fourier series converge in Lr′ (where
r′ = r

r−1 denote the Hölder conjugate of r).
Since we are also interested in probability distributions that lack density func-

tions, we provide the fairly mild Condition 2 as an alternative. As an example of
this condition in the Fourier case, suppose FD is uniformly equi-continuous, say,
with modulus of continuity ω : [0,∞) → [0,∞) satisfying ω(ε) ∈ o

(
1

log 1/ε

)
. Then,

there exists a constant C > 0 such that

sup
x∈X

∣∣∣∣∣∣f(x)−
∑
|z|≤ζ

f̃zφz(x)

∣∣∣∣∣∣ ≤ K(log ζ)ω

(
2π

ζ

)
. (7.9)

As a concrete example of this, it suffices if every f is αf -Hölder continuous for some
αf > 0. Finally, we note that, if P and Q are allowed to be arbitrary, then the above
uniform convergence assumption is essentially also necessary.

1Note that the case of Jensen-Shannon divergence requires an additional uniform lower bounded-
ness assumption.
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Proof: First note that it suffices to show that, for all f ∈ FD,

E
X∼P

[f(X)]− E
X∼Q

[f(X)] =
∑
z∈Z

f̃z

(
P̃z − Q̃z

)
.

We show this separately for the two sets of assumptions considered:

1. Case 1: P,Q have a densities p, q ∈ L2
µ. Then P̃z = 〈p, φz〉L2 , and so, by the

Plancherel Theorem, since f ∈ L∞µ (X ) ⊆ L2
µ(X ),

E
X∼P

[f(X)] =

∫
X
fp dµ = 〈f, p〉L2

µ
=
∑
z∈Z

f̃zP̃z <∞.

Similarly, EX∼Q [f(X)] =
∑

z∈Z f̃zQ̃z < ∞. Since these quantities are finite,
we can split the sum of differences∑

z∈Z
f̃z

(
P̃z − Q̃z

)
=
∑
z∈Z

f̃zP̃z −
∑
z∈Z

f̃zQ̃z = E
X∼P

[f(X)]− E
X∼Q

[f(X)] .

2. Case 2: For every f ∈ FD, the basis expansion of f in B converges uniformly
(over X ) to f . Then,∣∣∣∣∣∣ E

X∼P
[f(X)]− E

X∼Q
[f(X)]−

∑
|z|≤ζ

f̃z

(
P̃z − Q̃z

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
X
f(x) dP −

∫
X
f(x) dQ−

∑
|z|≤ζ

f̃z

(∫
X
φz(x) dP −

∫
X
φz(x) dQ

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
X
f(x) dP −

∫
X
f(x) dQ−

∫
X

∑
|z|≤ζ

f̃zφz(x) dP −
∫
X

∑
|z|≤ζ

f̃zφz(x) dQ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
X
f(x)−

∑
|z|≤ζ

f̃zφz(x) dP +

∫
X
f(x)−

∑
|z|≤ζ

f̃zφz(x) dQ

∣∣∣∣∣∣
≤
∫
X

∣∣∣∣∣∣f(x)−
∑
|z|≤ζ

f̃zφz(x)

∣∣∣∣∣∣ dP +

∫
X

∣∣∣∣∣∣f(x)−
∑
|z|≤ζ

f̃zφz(x)

∣∣∣∣∣∣ dQ
≤ 2 sup

x∈X

∣∣∣∣∣∣f(x)−
∑
|z|≤ζ

f̃zφz(x)

∣∣∣∣∣∣→ 0 as ζ →∞.

Theorem 53. Suppose that µ(X ) < ∞ and there exist constants LD, LG > 0, real-
valued nets {az}z∈Z , {bz}z∈Z such that FD = Hp,a(X , LD) and FG = Hq,b(X , LG),
where p, q ≥ 1. Let p′ = p

p−1 denote the Hölder conjugate of p. Then, for any P ∈ FG,

E
X1:n

[
dFD

(
P, P̂

)]
≤ LD

cp′√
n

∥∥∥∥∥
{
‖φz‖L∞P
az

}
z∈Z

∥∥∥∥∥
p′

+LDLG

∥∥∥∥∥
{

1

azbz

}
z∈Z\Z

∥∥∥∥∥
1/(1−1/p−1/q)

.
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Proof: By Lemma 60,

E
X1:n

[
dFD

(
P, P̂

)]
= E

X1:n

[
sup
f∈FD

∑
z∈Z
|f̃z
(
P̃z − P̂z

)
|

]

= E
X1:n

 sup
f∈FD

∑
z∈Z
|f̃z
(
P̃z − P̂z

)
|+

∑
z∈Z\Z

|f̃z
(
P̃z − P̂z

)
|


= E

X1:n

 sup
f∈FD

∑
z∈Z
|f̃z
(
P̃z − P̂z

)
|+

∑
z∈Z\Z

|f̃zP̃z|


≤ E

X1:n

[
sup
f∈FD

∑
z∈Z
|f̃z
(
P̃z − P̂z

)
|

]
+ sup
f∈FD

∑
z∈Z\Z

|f̃zP̃z|.

Note that we have decomposed the risk into two terms, the first comprising estima-
tion error (variance) and the second comprising approximation error (bias). Indeed,
in the case that FD = L2(X ), the above becomes precisely the usual bias-variance
decomposition of mean squared error.

To bound the first term, applying the Holder’s inequality, the fact that f ∈ FD,
and Jensen’s inequality (in that order), we have

E
X1:n

[
sup
f∈FD

∑
z∈Z
|f̃z
(
P̃z − P̂z

)
|

]
= E

X1:n

[
sup
f∈FD

∑
z∈Z

az|f̃z|
|P̃z − P̂z|

az

]

≤ E
X1:n

 sup
f∈FD

(∑
z∈Z

apz|f̃z|p
) 1

p

∑
z∈Z

(
|P̃z − P̂z|

az

)p′ 1
p′


≤ LD E
X1:n


∑
z∈Z

(
|P̃z − P̂z|

az

)p′ 1
p′


≤ LD

∑
z∈Z

EX1:n

[∣∣∣P̃z − P̂z∣∣∣p′]
ap
′
z


1
p′

≤ LD√
n

∑
z∈Z

‖φz‖p
′

L∞P

ap
′
z

 1
p′

,

where p′ = p
p−1 is the Hölder conjugate of p. In the last inequality we have used

Rosenthal’s inequality i.e.,

E
X1:n

[∣∣∣P̃z − P̂z∣∣∣p′] ≤ cp′ ‖φz‖p
′

L∞P
np′/2

.
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For the second term, by Holder’s inequality,

sup
f∈FD

∑
z∈Z\Z

|f̃zP̃z| ≤ sup
f∈FD

 ∑
z∈Z\Z

(
az|f̃z|

)p1/p ∑
z∈Z\Z

(
|P̃z|
az

)p′1/p′

≤ LD

∥∥∥∥∥∥
{
bzP̃z
bzaz

}
z∈Z\Z

∥∥∥∥∥∥
p′

≤ LD
∥∥∥{bzP̃z}z∈Z\Z∥∥∥

q

∥∥∥∥∥
{

1

bzaz

}
z∈Z\Z

∥∥∥∥∥
p′q
q−p′

by Holder

= LDLG

∥∥∥∥∥
{

1

azbz

}
z∈Z\Z

∥∥∥∥∥
1

1−(1/p+1/q)

7.13 Proof of Lower Bound

Theorem 55 (Minimax Lower Bound). Let λ(X ) = 1, and let p0 denote the uniform
density (with respect to Lebesgue measure) on X . Suppose {p0} ∪ {φz}z∈Z is an
orthonormal basis in L2

λ, suppose {az}z∈Z and {bz}z∈Z are two real-valued nets,
and let LD, LG ≥ 0. For any Z ⊆ Z , define

AZ := |Z|1/p sup
z∈Z

az and BZ := |Z|1/q sup
z∈Z

bz.

Then, forHD = Hp,a(LD) andHG := Hb,q(LG), for any Z ⊆ Z satisfying

BZ ≥ 16LG

√
n

log 2
(7.10)

and
2
LG
BZ

∑
z∈Z
‖φz‖L∞µ ≤ 1, (7.11)

we have

M(HD,HG) ≥ LGLD|Z|
64AZBZ

=
LGLD|Z|1−1/p−1/q

64 (supz∈Z az) (supz∈Z bz)
.

Proof: We will follow a standard procedure for proving minimax lower bounds
based on the Varshamov-Gilbert bound and Fano’s lemma (as outlined, e.g., Chapter
2 of Tsybakov (2009)). The proof is quite similar to a standard proof for the case of
L2
λ-loss, based on constructing a finite “worst-case” subset ΩG ⊆ FG of densities

over which estimation is difficult. The main difference is that we also construct a
similar finite “worst-case” subset ΩD ⊆ FD of the discriminator class FD, which
we use to lower bound dFD ≥ dΩD over ΩG. Specifically, we will use the following
result:

Lemma 61 (Simplified Form of Theorem 2.5 of Tsybakov (2009)). Fix a family P of
distributions over a sample space X and fix a pseudo-metric ρ : P × P → [0,∞] over P .
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Suppose there exists a set T ⊆ P such that

s := inf
p,p′∈T

ρ(p, p′) > 0 and sup
p∈T

DKL(p, p0) ≤ log |T |
16

,

where DKL : P × P → [0,∞] denotes Kullback-Leibler divergence. Then,

inf
p̂

sup
p∈P

E [ρ(p, p̂)] ≥ s

16
,

where the inf is taken over all estimators p̂ (i.e., (potentially randomized) functions of p̂ :
X → P).

Note that, compared to Theorem 2.5 of Tsybakov (2009), we have loosened some
of the constants in order to provide a simpler finite-sample statement.

Suppose Z ⊆ Z satisfies condition (7.10) and (7.11). For each τ ∈ {−1, 1}Z define

pτ := p0 + cG
∑
z∈Z

τzφz,

where cG = LG
BZ

, and let ΩG :=
{
pτ : τ ∈ {−1, 1}Z

}
.

Since each φz is orthogonal to p0, each p ∈ ΩG has unit mass
∫
X p dλ = 1, and, by

assumption (7.11),

‖pτ − p0‖L∞λ =

∥∥∥∥∥LGBZ ∑
z∈Z

τzφz

∥∥∥∥∥
L∞λ

≤ LG
BZ

∑
z∈Z
‖φz‖L∞λ ≤ 0.5,

which implies that each p ∈ ΩG is lower bounded on X by 0.5. Thus, each p ∈ ΩG

is a probability density. Note that, if we had worked with Gaussian sequences, as
in Liang (2017), we would not need to check this, and could hence omit assump-
tion (7.11). Finally, by construction, for each p ∈ ΩG,

‖p‖qb =
∑
z∈Z

bqz|pz|q = cq
∑
z∈Z

bqz ≤ cq|Z| sup
z∈Z

bqz = LqG

so that ΩG ⊆ Hb,q(LG). Also, for cD := LD
AZ

and for each τ ∈ {−1, 1}Z , let

fτ :=
LD
AZ

∑
z∈Z

τzφz,

and define ΩD :=
{
fτ : τ ∈ {−1, 1}Z

}
. By construction, for each fτ ∈ ΩD,

‖fτ‖pa =
LpD
ApZ

∑
z∈Z

apz ≤
LpD
ApZ
|Z| sup

z∈Z
apz = LpD,

so that ΩD ⊆ Hp,a(LD). Then, for any τ, τ ′ ∈ {−1, 1}Z ,

dFD (pτ , pτ ′) ≥ dΩD (pτ , pτ ′) = sup
τ ′′∈{−1,1}Z

∑
z∈Z

fτ ′′,zcG(τz − τ ′z) = 2cGcDω
(
τ, τ ′

)
,

where ω (τ, τ ′) :=
∑

z∈Z 1{τz 6=τ ′z} denotes the Hamming distance between τ and τ ′.
By the Varshamov-Gilbert bound (Lemma 2.9 of Tsybakov (2009)), we can select
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T ⊆ {−1, 1}Z such that log |T | ≥ |Z| log 2
8 and, for each τ, τ ′ ∈ T ,

ω
(
τ, τ ′

)
≥ |Z|

8
, so that dF (θτ , θτ ′) ≥

cGcD|Z|
4

.

Moreover, for any τ ∈ {−1, 1}Z , using the facts that − log(1 + x) ≤ x2 − x for all
x ≥ −0.5 and that

∫
X pτ dx = 1 =

∫
X p0 dx,

DKL(pnτ , p
n
0 ) = nDKL(pτ , p0)

= n

∫
X
pτ (x) log

pτ (x)

p0(x)
dx

= −n
∫
X
pτ (x) log

(
1 +

p0(x)− pτ (x)

pτ (x)

)
dx

≤ n
∫
X
pτ (x)

((
p0(x)− pτ (x)

pτ (x)

)2

− p0(x)− pτ (x)

pτ (x)

)
dx

= n

∫
X

(p0(x)− pτ (x))2

pτ (x)
dx

≤ 2n

∫
X

(p0(x)− pτ (x))2 dx

= 2n‖p0 − pτ‖L2
λ

= 2n
L2
G

B2
Z

|Z| ≤ n
L2
G

B2
Z

16

log 2
log |T | ≤ log |T |

16
,

where the last two inequalities follow from the Varshamov-Gilbert bound and as-
sumption (7.10), respectively. Combining the above results, Lemma 61 gives a mini-
max lower bound of

M(FD,FG) ≥ cGcD|Z|
64

=
LGLD|Z|
64AZBZ

.

7.14 Proofs and Further Discussion of Applications in Sec-
tion 7.7

Example 10 (Sobolev Spaces, Oracle and Adaptive estimators in Fourier basis). Sup-
pose that, for some s, t ≥ 0, az =

(
1 + ‖z‖2∞

)s/2 and bz =
(
1 + ‖z‖2∞

)t/2. Then, one
can check that, for c = 2d−2sd

d−2s ,∑
z∈Z

a−2
z ≤ 1 + c

(
ζd−2s − 1

)
, sup

z∈Z\Z
a−1
z ≤ ζ−s, and sup

z∈Z\Z
b−1
z ≤ ζ−t,

so that Theorem 53 gives

E
X1:n

[
dFD

(
P, P̂

)]
≤ LD√

n

(
1 + cζd/2−s

)
+ LDLGζ

−(s+t). (7.12)

Setting ζ = n
1

2t+d gives

E
X1:n

[
dFD

(
P, P̂

)]
≤ Cn−min{ 1

2
, s+t
2t+d}, where C := LD

(
2
√
c+ LG

)
.
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On the other hand, as long as t > d/2, setting

ζ =

(
256L2

G

n

log 2

) 1
2t+d

satisfies the conditions of Theorem 55, giving the minimax lower bound

M(Ws,2,Wt,2) ≥ LGLD
64ζs+t

= c1n
− s+t

2t+d where c1 =
LGLD

64

(
log 2

256L2
G

) t+s
2t+d

.

Classical methods can also be used to show that, for all values of s and t,M(Hs,2,Ht,2) ≥
c2n
−1/2. Thus, we conclude, there exist constants C, c > 0 such that

cn−min{ 1
2
, s+t
2t+d} ≤M

(
Ws,2,Wt,2

)
≤ Cn−min{ 1

2
, s+t
2t+d}. (7.13)

Combining the observation that the s-Hölder space Ws,∞ ⊆ Ws,2 with the lower
bound in Theorem 3.1 of Liang (2017), we have that (7.13) also holds when Hs,2 is
replaced with Ws,∞ (e.g., in the case of the Wasserstein metric dW1,∞), or indeed
Ws,q for any q ≥ 2.

Corollary 62 (Adaptive Upper Bound for Sobolev Spaces). For any t, ζ ≥ 0 and s ∈
(0, d/2),

sup
P∈Wt,2

E
X1:n

IID∼ P

[
dWs,2

(
P, P̂Zζ

)]
≤ Cζ−s sup

P∈Wt,2
E

X1:n
IID∼ P

[
dL2

µ

(
P, P̂Zζ

)]
, (7.14)

where C :=
√

2
(

1 + 2d−2sd
d−2s

)
does not depend on n or ζ. Hence, if ζ̂(X1:n) is any adaptive

scheme for choosing ζ (i.e., if computing ζ̂ does not require knowledge of t), then P̂
ζ̂

is
adaptively minimax under the loss dWs,2 ; that is, for all t > 0, there exists C > 0 such that

sup
P∈Wt,2

E
X1:n

IID∼ P

[
dWs,2

(
P, P̂Z

ζ̂

)]
≤M

(
Ws,2,Wt,2

)
.

One common scheme for choosing ζ̂ is to use a leave-one-out cross-validation scheme. Specif-
ically, for

Ĵ(ζ) := ‖P̂ζ‖22−
2

n

n∑
i=1

P̂ζ,−i(Xi), where P̂ζ,−i :=
∑
z∈Zζ

 1

n− 1

∑
j∈[n]\{i}

φz(Xj)

φz

is a computation of the estimate P̂ζ omitting the ith sampleXi, one can show that E
X1:n

IID∼ P

[
Ĵ(ζ)

]
=

E
X1:n

IID∼ P

[
d2
L2
µ

(
P, P̂ζ

)]
− ‖P‖2L2

µ
, so that, up to an additive constant independent of ζ,

Ĵ(ζ) is an unbiased estimate of the squared L2
µ-risk using the parameter ζ. Based on this,

setting
ζ̂ := argmin

ζ∈[0,n−1/d]

J(ζ),

one can show that P̂
ζ̂

is adaptively minimax over all Sobolev spacesWt,2 with t > 0; that is,
for all t > 0,

sup
P∈Wt,2

E
X1:n

IID∼ P

[
dL2

µ

(
P, P̂

ζ̂

)]
�M

(
L2
µ,Wt,2

)
. (7.15)
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This equivalence (7.14) implies that we can generalize the adaptive minimaxity bound (7.15)
to

sup
P∈Wt,2

E
X1:n

IID∼ P

[
dWs,2

(
P, P̂

ζ̂

)]
�M

(
Ws,2,Wt,2

)
. (7.16)

for all s ∈ [0, d/2].

Proof: A proof of the adaptive minimaxity of the cross-validation estimator in
dL2

µ
can be found in Sections 7.2.1 and 7.5.1 of Massart (2007). Therefore, we prove

only Inequality (7.14) here. To do this, we combine Theorem 53 with a lower bound
on the worst-case performance of the orthogonal series estimator under L2

µ loss,
which we establish by explicitly constructing a worst-case true distribution as fol-
lows.

Define Pζ := 1+LGζ
−tφζ (where φζ is any φz satisfying ‖z‖∞ = ζ), one can easily

check that Pζ ∈ Wt,2, and that, for any z with ‖z‖ < ζ,

E
X1:n

IID∼ Pζ

[(
(̃Pζ)z − P̂z

)2
]

= E
X1:n

IID∼ Pζ

( 1

n

n∑
i=1

φz(Xi)

)2


=
1

n
E

X∼Pζ

[
φ2
z(X)

]
=

1

n

∫
X
φ2
z(x)

(
1 + LGζ

−tφζ(x)
)
dx

≥ 1

n

∫
X
φ2
z(x) dx =

1

n

(with equality if ζ 6= 2z). Also, let

f :=
LD√

2

∑
‖z‖<ζ

(
P̃ζz − P̂z

)
√
|Zζ |

φz +
LD√

2
φζ

so that

‖f‖22 =
L2
D

2

∑
‖z‖<ζ

(
P̃ζz − P̂z

)2

|Zζ |
+
L2
D

2
≤
L2
D

2

∑
‖z‖<ζ

|Zζ |−1 +
L2
D

2
≤ L2

D,

and hence f ∈ L2
µ(1). Then,

E
X1:n

IID∼ Pζ

[
dL2

µ

(
Pζ , P̂Zζ

)]
≥ E

X1:n
IID∼ P

 ∑
‖z‖<ζ

f̃z

(
P̃ζz − P̂z

)2
+ f̃ζP̃ζz


=

LD√
2|Zζ |

∑
‖z‖<ζ

E
X1:n

IID∼ P

[(
P̃ζz − P̂z

)2
]

+
LDLG√

2
ζ−t

≥ LD√
2|Zζ |

∑
‖z‖<ζ

1√
n

+
LDLG√

2
ζ−t =

LD√
2

(√
ζd

n
+ LGζ

−t

)

It follows that

sup
P∈Wt,2

E
X1:n

IID∼ P

[
dL2

µ

(
P, P̂Zζ

)]
≥ LD√

2

(√
ζd

n
+ ζ−t

)
.
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On the other hand, as we already saw, Theorem 53 gives

sup
P∈Wt,2

E
X1:n

[
dWs,2

(
P, P̂

)]
≤
(

1 +
2d−2sd

d− 2s

)
LD

(√
ζd

n
+ LGζ

−t

)
ζ−s.

Combining these two inequalities gives

sup
P∈Wt,2

E
X1:n

[
dWs,2

(
P, P̂

)]
≤ Cζ−s sup

P∈Wt,2
E

X1:n
IID∼ P

[
dL2

µ

(
P, P̂Zζ

)]
.

7.14.1 Wavelet Basis

Our previous applications were given in terms of the Fourier basis. In this section,
we demonstrate that our upper and lower bounds can give tight minimax results
using other bases (in this case, the Haar wavelet basis).

Suppose that X = [0, 1]D, and suppose that a function f : X → R has Haar
wavelet basis coefficients f̃i,j , indexed by z ∈ Z := {(i, j) ∈ N× N : j ∈ [2i]}, where
i ∈ N is the order and j ∈ [2i] is the index within that order.

One can show (see, e.g., Donoho, Johnstone, Kerkyacharian, and Picard (1996))
that the Besov seminorm ‖ · ‖Bqp,q satisfies

‖f‖qBrp,q =
∑
i∈N

2iqs

∑
j∈[2i]

|f̃i,j |p
q/p

=
∑
i∈N

2iqs‖f̃i‖qp,

where s = r + 1
2 −

1
p . In particular, when p = q = 2, s = r, and one can show that

Brp,q =Wr
2 , and

‖f‖qBrp,q =
∑

(i,j)∈Z

22is|f̃i,j |2,

For some ζ > 0, we will choose the truncation set Z to be of the form

Z = {(i, j) ∈ Z : i ≤ ζ}.

Note that, for each i ∈ N, since φi,1, ..., φi,2i have disjoint supports

sup
x∈X

∑
j∈[2i]

|φi,j(x)| = sup
x∈X

sup
j∈[2i]

|φi,j(x)| = 2i/2.

Thus,

∑
j∈[2i]

‖φi,j‖2L2
P

=
∑
j∈[2i]

∫
X
φ2
i,j(x)dP ≤

∫
X

∑
j∈[2i]

φi,j(x)

2

dP = 2i.

Example 12 (Sobolev Space, Wavelet Basis). Suppose that, for some s, t ≥ 0, ai,j = 2is

and bi,j = 2it. Then, one can check that, for some c > 0

∑
z∈Z

‖φz‖2L2
P

a2
z

=
∑
i≤ζ

∑
j∈[2i]

‖φi,j‖2L2
P

22is
=
∑
i≤ζ

2i

22is
=

2(ζ+1)(1−2s) − 1

21−2s − 1
� 2ζ(1−2s).
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Also, supz∈Z\Z a
−1
z ≤ 2−sζ and supz∈Z\Z b

−1
z ≤ 2−tζ . Thus, Theorem 53 gives

E
X1:n

[
dFD

(
P, P̂

)]
. LD

(√
c

n
2(d/2−s)ζ + LG2−(s+t)ζ

)
.

By letting ζ = log2 ξ, we can easily see that this is identical, up to constants, to the
bound for the Sobolev case. In contrast to Fourier basis, a larger variety of function
spaces (such as inhomogeneous Besov spaces) can be expressed in terms of wavelet
basis. The classical work of Donoho, Johnstone, Kerkyacharian, and Picard (1996)
showed that, under Lpµ losses, linear estimators, such as that analyzed in our Theo-
rem 53 are sub-optimal in these spaces, but that relatively simple thresholding esti-
mators can recover the minimax rate. We leave it to future work to understand how
this phenomenon extends to more general adversarial losses.

7.15 Proofs and Applications of Explicit & Implicit Genera-
tive Modeling Results (Section 7.9)

Here, we prove Theorem 59 from the main text, provide some discussion of when the
converse direction MI(P, `, n) ≤MD(P, `, n) holds, and also provide some concrete
applications.

7.15.1 Proofs of Theorem 59 and Converse

Theorem 59 (Conditions under which Density Estimation is Statistically no harder
than Sampling). Let FG be a family of probability distributions on a sample space
X . Assume the following:

(A1) ` : P × P → [0,∞] is non-negative, and there exists C4 > 0 such that, for all
P1, P2, P3 ∈ FG,

`(P1, P3) ≤ C4 (`(P1, P2) + `(P2, P3)) .

(A2) MD(FG, `,m)→ 0 as m→∞.
(A3) For all m ∈ N, we can draw m IID samples Z1:m = Z1, ..., Zm

IID∼ QZ of the
latent variable Z.

(A4) there exists a nearly minimax sequence of samplers X̂k : X n×Z → X such that,
for each k ∈ N, almost surely over X1:n, P

X̂k(X1:n,Z)|X1:n
∈ FG.

Then, MD(FG, `, n) ≤ C4MI(FG, `, n).

Proof: The assumption (A2) implies that there exists a sequence {P̂m}m∈N of
density estimators P̂m : Xm → P that is uniformly consistent in ` over P ; that is,

lim
m→∞

sup
P∈P

E
Y1:m

IID∼ P

[
`
(
P, P̂m(Y1:m)

)]
. (7.17)

For brevity, we use the abbreviation P
X̂k

= P
X̂k(X1:n,Z)|X1:n

in the rest of this

proof to denote the conditional distribution of the ‘fake data’ generated by X̂k given
the true data. Recalling that the minimax risk is at most the risk of any particular
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sampler, we have

MD(P, `, n) := inf
P̂

sup
P∈P

E
X1:n

IID∼ P

Z1:m
IID∼ QZ

[
`
(
P, P̂ (X1:n)

)]

≤ sup
P∈P

E
X1:n

IID∼ P

Z1:m
IID∼ QZ

[
`
(
P, P̂m(Xn+1:n+m)

)]
.

Taking limm→∞ gives, by Tonelli’s theorem and non-negativity of `,

MD(P, `, n)

≤ lim
m→∞

sup
P∈P

E
X1:n

IID∼ P

Z1:m
IID∼ QZ

[
`
(
P, P̂m(Xn+1:n+m)

)]

≤ C4 lim
m→∞

sup
P∈P

E
X1:n

IID∼ P

Z1:m
IID∼ QZ

[
`
(
P, P

X̂k

)
+ `
(
P
X̂k
, P̂m(Xn+1:n+m)

)]

≤ C4 lim
m→∞

sup
P∈P

E
X1:n

IID∼ P

Z1:m
IID∼ QZ

[
`
(
P, P

X̂k

)
+ `
(
P
X̂k
, P̂m(Xn+1:n+m)

)]

≤ C4 sup
P∈P

E
X1:n

IID∼ P

[
`
(
P, P

X̂k

)]
(7.18)

+ C4 lim
m→∞

sup
P∈P

E
X1:n

IID∼ P

Z1:m
IID∼ QZ

[
`
(
P
X̂k
, P̂m(Xn+1:n+m)

)]
. (7.19)

In the above, we upper bounded MD(P, `, n) by the sum of two terms, (7.18) and
(7.19). Since the sequence {X̂k}k∈N is nearly minimax, if we were to take an infimum
over k ∈ N on both sides, the term (7.18) would become precisely C4MI(P, `, n).
Therefore, it suffices to observe that the second term (7.19) is 0. Indeed, by the
assumption that P

X̂k
∈ P for all X1:n ∈ X and the uniform consistency assump-

tion (7.17),

lim
m→∞

sup
P∈P

E
X1:n

IID∼ P

Z1:m
IID∼ QZ

[
`
(
P
X̂k
, P̂m(Xn+1:n+m)

)]

≤ lim
m→∞

sup
P∈P,X1:n

IID∼ P

E
Z1:m

IID∼ QZ

[
`
(
P
X̂k
, P̂m(Xn+1:n+m)

)]
≤ lim

m→∞
sup
P ′∈P

E
Xn+1:n+m

IID∼ P ′

[
`
(
P, P̂m(Xn+1:n+m)

)]
= 0.

For completeness, we provide a very simple result on the converse of Theo-
rem 59:

Theorem 63 (Conditions under which Sampling is Statistically no harder than Den-
sity Estimation). Suppose that, there exists as nearly minimax sequence {P̂k}k∈N such that,
for any k ∈ N, we can draw a random sample X̂ from P̂k(X1:n). Then,

MD(FG, `, n) ≥MI(FG, `, n).
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The assumption above that we can draw samples from a nearly minimax se-
quence of estimators if not particularly insightful, but techniques for drawing such
samples have been widely studied in the vast literature of Monte Carlo sampling (Robert,
2004). As an example, if P̂ is a kernel density estimator with kernelK, then, recalling
that K is itself a probability density, of which P̂ is a mixture, we can sample from P̂
simply by choosing a sample uniformly from X1:n and adding noise ε ∼ K. Alter-
natively, if P̂ is bounded and has bounded support, then one can perform rejection
sampling.

Proof: Since, by definition of the implicit distribution of X̂ ,

P
X̂(X1:n,Z)|X1:n

= P̂ (X1:n)

is precisely the implicit distribution of X̂ , we trivially have

MI(FG, `, n) ≤ sup
P∈FG

E
X1:n

IID∼ P

[
`
(
P, P

X̂(X1:n,Z)|X1:n

)]

7.15.2 Applications

Example 13 (Density Estimation and Sampling in Sobolev families under Dual-Sobolev
Loss). There exist constants C > c > 0 such that, for all n ∈ N,

cn−min{ s+t
2s+d

, 1
2} ≤MI

(
Wt,2, dWs,2 , n

)
≤ Cn−min{ s+t

2s+d
, 1
2}.

Proof: Since adversarial losses always satisfy the triangle inequality, the first in-
equality follows Theorems 59 and the discussion in Example 10. For the second
inequality, since we have already established that the orthogonal series estimator P̂Z
is nearly minimax, by Theorem 63 it suffices to give a scheme for sampling from the
distribution P̂Z(X1:n). Since the sample spaceX = [0, 1]d is bounded and the estima-
tor P̂Z(X1:n) has a bounded density p : X → [0,∞), we can simply perform rejection
sampling; that is, repeatedly sample Z × Y uniformly from X × [0, supx∈X p(x)]. Let
Z∗ denote the first Z sample satisfying Y < p(Z). Then, we Z∗ will necessarily have
the density p.

Example 14 (Density Estimation and Sampling in Exponential Families under Jensen-Shan-
non, Lq, Hellinger, and RKHS losses). Let H be an RKHS over a compact sample
space X ⊆ Rd, and let

FG :=
{
pf : X → [0,∞)

∣∣∣pf (x) = ef(x)−A(f) for all x ∈ X , f ∈ H
}
,

in which A(f) := log
∫
X e

f(x) dµ denotes the log-partition function.
The Jensen-Shannon divergence J : P × P → [0,∞] is defined by

J(P,Q) :=
1

2

(
DKL

(
P,
P +Q

2

)
+DKL

(
Q,

P +Q

2

))
,
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where P+Q
2 denotes the uniform mixture of P and Q, and, noting that we always

have P � P+Q
2 and Q� P+Q

2 ,

DKL(P,Q) :=

∫
X

log

(
dP

dQ

)
dP

denotes the Kullback-Leibler divergence. Although J does not satisfy the triangle
inequality, one can show that

√
J is a metric on P (Endres and Schindelin, 2003),

and hence, for all P,Q ∈ P , by Cauchy-Schwarz,

J(P,Q) =
(√

J(P,Q)
)2
≤
(√

J(P,R) +
√
J(R,Q)

)2
≤ 2J(P,R) + 2J(R,Q).

(7.20)
Also, under mild regularity conditions on H, Sriperumbudur, Fukumizu, Gretton,
Hyvärinen, and Kumar (2017) (in their Theorem 7) provides uniform convergence
guarantees for a particular density estimator over P . Combining this the inequal-
ity (7.20), our Theorem 59 implies

MD(P, J, n) ≤ 2MI(P, J, n).

For the same class P , the convergence results of Sriperumbudur, Fukumizu,
Gretton, Hyvärinen, and Kumar (2017) (their Theorems 6 and 7) also imply simi-
lar guarantees under several other losses, including the parameter estimation loss
‖fP − fP̂ ‖H in the RKHS metric, as well as the Lqµ and Hellinger metrics H (on the
density), so that we have MD(P, ρ, n) ≤MI(P, ρ, n) when ρ is any of these metrics.

Perhaps more interestingly, in the case of Jensen-Shannon divergence, under cer-
tain regularity conditions, we can altogether drop the assumption thatP

X̂k(X1:n,Z)|X1:n
∈

P using uniform convergence bounds shown in Section 5 of Sriperumbudur, Fuku-
mizu, Gretton, Hyvärinen, and Kumar (2017) for the mis-specified case; the density
estimator described therein converges (uniformly over P∗) to the projection P∗ of
P
X̂k(X1:n,Z)|X1:n

onto P even when samples are drawn from P
X̂k(X1:n,Z)|X1:n

.
It is also worth pointing out that, when densities in FG are additionally assumed

to be lower bounded by a positive constant κ > 0 (i.e.,

κ := inf
p∈FG

inf
x∈X

p(x) > 0,

then, by the inequality − log(1 + x) ≤ x2 − x that holds for all x ≥ −0.5, for all
densities p, q ∈ FG,∫
X
p(x) log

(
2p(x)

p(x) + q(x)

)
dx = −

∫
X
p(x) log

(
1 +

q(x)− p(x)

2p(x)

)
dx

≤
∫
X
p(x)

((
q(x)− p(x)

2p(x)

)2

−
(
q(x)− p(x)

2p(x)

))
dx

=

∫
X

(q(x)− p(x))2

2p(x)
dx ≤ 1

2κ
‖P −Q‖2L2

µ
,

and, therefore, J(P,Q) ≤ 1
2κ‖P − Q‖L2

µ
. Thus, under this additional assumption

of uniform lower-boundedness, standard results for density estimation under L2
µ

apply (Tsybakov, 2009).
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FIGURE 7.2: Simple synthetic experiments to showcase
the tightness of our bound on convergence rates under

adversarial losses in the Sobolev case.

This section presents some
empirical results supporting
the theoretical bounds above.
First, we consider an exam-
ple with a finite basis, which
should yield the parametric
n−1/2 rate. In particular, we
construct the true distribution
P to consist of 6 randomly
chosen basis functions in the
Fourier basis. We employ the
truncated series estimator P̂
of (7.3) in the same basis us-
ing different number of samples n and compute the distance dFD

(
P, P̂

)
. Under

this setting, the maximization problem of (7.1) needed to evaluate this distance can
be solved in closed form. The risk empirically appears to closely follow our de-
rived minimax rate of n−1/2, as shown in Figure 7.2(a). Next, we consider a non-
parametric case, in which the number of active basis elements increases as function
of n, weighted such that Inequality (7.6) predicts a rate of n−1/3. As expected, the
estimated risk, shown in Figure 7.2(b), closely resembles the rate of n−1/3.

7.17 Future Work

In this chapter, we showed that minimax convergence rates for distribution estima-
tion under certain adversarial losses can improve when the probability distributions
are assumed to be smooth, using an orthogonal series estimator that smooths the
observed empirical distribution. On the other hand, recent work has also shown
that, at least under Wasserstein losses, minimax convergence rates improve when
the distribution is assumed to have support of low intrinsic dimension, even within
a high-dimensional ambient space (Singh and Póczos, 2018). In any case, further
work is needed to understand whether minimax rates further improve when distri-
butions are simultaneously smooth and supported on a set of low intrinsic dimen-
sion. It is easy to see that the empirical distribution does not benefit from assumed
smoothness (see, e.g., Proposition 6 of Weed and Bach (2017)). Whether an orthog-
onal series estimate benefits from low intrinsic dimension may depend on the basis
used; the Fourier basis is not likely to benefit, but a wavelet basis, which is spatially
localized, may. Nearest neighbor methods have also been shown to benefit from
both smoothness and low intrinsic dimensionality, under L2

µ loss, and may therefore
be promising (Kpotufe and Garg, 2013).

In Chapter 8, we briefly discuss extension of the present chapter’s key results to
larger classes of spaces, such as inhomogeneous Besov spaces. Over these spaces,
we extend the classic work of Donoho, Johnstone, Kerkyacharian, and Picard (1996),
which showed that simple linear density estimators such as the orthogonal series
estimator studied in this chapter cease to be minimax rate-optimal, but simple non-
linear estimators such as wavelet thresholding estimators continue to be minimax
optimal.

The results of Yarotsky (2017), on uniform approximation of smooth functions
(over Sobolev spaces) by neural networks, were crucial to the result Theorem 57
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bounding the error of perfectly optimized GANs. If these approximation-theoretic
results can be generalized to other spaces (e.g., RKHSs), then our Theorem 53 can be
used to derive performance bounds for perfectly optimized GANs over these spaces.

Finally, it has been widely observed that, in practice, optimization of GANs can
be quite difficult (Nagarajan and Kolter, 2017; Liang and Stokes, 2018; Arora, Ge,
Liang, Ma, and Zhang, 2017). This limits the practical implications of our perfor-
mance bounds on GANs, which assumed perfect optimization (i.e., convergence to
a generator-optimal equilibrium). Conversely, most work studying the optimiza-
tion landscape of GANs is specific to the noiseless (i.e., “infinite sample size”) case,
whereas our lower bounds suggest that the sample complexity of training GANs
may be substantial. Hence, it is important to generalize these statistical results to the
case of imperfect optimization, and, conversely, to understand the effects of statisti-
cal noise on the optimization procedure.
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Chapter 8

Open Questions, Preliminary
Results, and Future Work

While I hope that the previous chapters have shed light on a few problems in density
and density functional estimation, far more problems in this domain remain open.
In this chapter, I will discuss, at a high level, a few pieces of additional work that
are closely related to, but not formally part of, this thesis, either because they are
primarily collaborative in nature, or because they are still preliminary.

8.1 Distribution estimation under Besov IPM losses

In Chapter 7, we discussed the nonparametric estimation of probability distributions
under a new class of losses, integral probability metrics (IPMs), which are indexed
by a familyF of discriminator functions. We focused, in particular, the case in which
F is a weighted L2-type ellipse, such as a ball in a Hilbert-Sobolev space. Hilbert-
Sobolev IPMs are mathematically nice to work with, and can be used to upper bound
a number of more commonly used IPMs, such as Wasserstein and total variation
distances. However, these one-sided bounds do not, a priori, imply tight bounds on
minimax convergence rates under these latter losses.

Recently, Ananya Uppal, myself, and Barnabás Póczos, considered a very broad
class of IPMs, indexed by balls in Besov spaces, which generalize Hilbert-Sobolev
spaces and, moreover include Hölder spaces and Lp spaces for general p ≥ 1. In ad-
dition to the Hilbert-Sobolev IPMs and certain types of MMD we previously studied
(in the L2 case), the class of IPMs indexed by Besov balls also includes (constant-
factor approximations of) Wasserstein, total variation, Kolmogorov-Smirnov dis-
tances between probability distributions. For data drawn from probability densities
that themselves lie in Besov classes, we have derived minimax estimation rates un-
der the entire range of Besov IPMs; for some Besov IPMs, these are the first known
minimax rates, and, for most Besov IPMs, these are the first minimax rates derived
under smoothness assumptions on the distribution (although the concurrent work
of Weed and Berthet (2019) has explored the case of smoothness under Wasserstein
distances). The upper bounds utilize a non-linear wavelet thresholding density esti-
mator originally proposed by Donoho, Johnstone, Kerkyacharian, and Picard (1996).
We show, moreover, that, for densities with relatively inhomogenous smoothness
(e.g., the emission spectrum of a metal halide lamp pictured in Figure 8.1), non-
linearity in the density estimator is necessary to obtain an optimal worst-case con-
vergence rate; specifically, we prove a sharper lower bound on the minimax error
of linear estimators, generalizing results of Donoho, Johnstone, Kerkyacharian, and
Picard (1996) for Lp losses to general Besov IPMs.
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FIGURE 8.1: Emission spectrum of a metal halide lamp, shown
as an example of a density function with very inhomogeneous
smoothness. Any linear density estimator, depending on its
tuning, will either over-fit the data in smooth regions (e.g.,
around 500nm or 700nm) or under-fit the data in spiky regions
(e.g., around 550nm or 600nm). On the other hand, a non-
linear wavelet-thresholding estimator can adaptively allocate a
finer representation to the spikier portions of the density. Im-
age credits: Philips Lighting (https://commons.wikimedia.org/
wiki/File:MHL.png), “MHL”, https://creativecommons.

org/licenses/by-sa/2.5/nl/deed.en

As we did in Chapter 7, using the oracle inequality of Liang (2017), our own
results on the relationship between implicit and explicit generative modeling (e.g.,
Theorem 59), we were able extend our upper bounds to perfectly-optimized neural
network GANs (according to a recent scheme for approximating Besov functions
by deep fully-connected ReLU networks (Suzuki, 2018)), after applying a new form
of regularization based on wavelet-thresholding. The resulting GAN construction,
tuned appropriately, is also minimax optimal over all Besov spaces. Interestingly,
this one of the first theoretical results showing a clear advantage of neural networks
over classical (linear) density estimators.

This work is available on arXiv (Uppal, Singh, and Póczos, 2019) and is currently
under review. In the next section, we provide a more technical overview of our
results, although the details are still simplified compared to the full paper.

8.1.1 Summary of Results for Besov IPMs

As noted in the previous section, the advantage of Besov spaces (over more classical
Hölder or Sobolev spaces) is the ability simultaneously model smoothness at dif-
ferent spatial scales. While there exist many equivalent definitions of Besov spaces
(see, e.g., Leoni (2017) or Burenkov (1998)), the definition under which this advan-
tage is most intuitive, and the definition which we utilize, is in terms of wavelet
bases, a simple example of which is illustrated in Figure 8.2. A Besov space Bsp,q,
parametrized by a triple (s, p, q) ∈ (0,∞)× [1,∞]× [1,∞], is a space of smooth func-
tions, in which smoothness is characterized by rapid decay of functions’ wavelet

https://commons.wikimedia.org/wiki/File:MHL.png
https://commons.wikimedia.org/wiki/File:MHL.png
https://creativecommons.org/licenses/by-sa/2.5/nl/deed.en
https://creativecommons.org/licenses/by-sa/2.5/nl/deed.en
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FIGURE 8.2: The first five levels of the Haar wavelet basis, the sim-
plest of wavelet basis. The level (or scale) is indexed by j ∈ N, while
the shift (or offset) is indexed by k ∈ [2j ]. Note that our results actu-

ally require using slightly smoother wavelets.
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basis coefficients; specifically, the norm

‖f‖Bsp,q :=

∑
j∈N

2j(s+D(1/2−1/p))

 2j∑
k=1

βpj,k

1/p

q

1/q

,

in which βj,k :=
∫
fφj,k denotes the projection of f onto the basis element φj,k of

level j ∈ N and shift k ∈ [2j ] (the indexing scheme is also illustrated in Figure 8.2).
The parameter s measures smoothness, corresponding roughly to the number of
well-behaved derivatives of f , much as in the Hölder or Sobolev cases. The param-
eter p measures the homogeneity of the smoothness constraint over the domain (in
our case, the sample space). When p is large, the smoothness constraint is applied in
a strong, worst-case sense over the domain; for example, the space Bs∞,∞ is topolog-
ically equivalent to an s-Holder space, in which the derivative f (s) lies in L∞ (i.e., is
bounded, except perhaps on a set of measure zero). When p is small, the smoothness
constraint is applied in a more relaxed average sense over the domain; for exam-
ple, the space B1

1,1 corresponds (at least in 1 dimension) to the space of functions
of bounded variation. The parameter q affects only polylogarithmic factors in our
results, and we don’t examine its effect in detail here.

Having defined Besov spaces, and omitting some technical conditions on the
wavelet basis, our main technical contributions are now easy to summarize:

1. We prove lower and upper bounds on minimax convergence rates of distri-
bution estimation under IPM losses when the distribution class P = Bσgpg ,qg and the
discriminator class F = Bσdpd,qd are Besov spaces; these rates match up to polyloga-
rithmic factors in the sample size n. Our upper bounds use the wavelet-thresholding
estimator proposed in Donoho, Johnstone, Kerkyacharian, and Picard (1996), which
we show converges at the optimal rate for a much wider range of losses than pre-
viously known. Specifically, if M(F ,P) denotes minimax risk, we show that for
p′d ≥ pg, σg ≥ D/pg,

M
(
Bσdpd,qd ,B

σg
pg ,qg

)
� max

{
n
− σg+σd

2σg+D , n
−σg+σd+D(1−1/pg−1/pd)

2σg+D(1−2/pg)

}
,

where � denotes equality up to factor of
√

log n.
2. We show that, for p′d ≥ pg and σg ≥ D/pg, no estimator in a large class of

distribution estimators, called “linear estimators”, can converge at a rate faster than

Mlin
(
Bσdpd,qd ,B

σg
pg ,qg

)
� n

− σg+σd−D/pg+D/p′d
2σg+D(1−2/pg)+2D/p′

d .

“Linear estimators” include the empirical distribution, kernel density estimates with
uniform bandwidth, and the orthogonal series estimators we discussed in Chap-
ter 7. Importantly, this effect becomes larger when the data dimension D is large
and the distribution P has relatively sparse support (e.g., if P is supported near a
low-dimensional manifold).

3. In analogy to Theorem 57 in Chapter 7, we show that the minimax conver-
gence rate can be achieved by a GAN with (fully-connected, ReLU) generator and
discriminator networks of bounded size, after some regularization. This result is
perhaps more interesting that Theorem 57, in that it is one of the first theoretical re-
sults separating performance of GANs from that of classic nonparametric tools such
as kernel methods; this may help explain GANs’ successes with high-dimensional
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FIGURE 8.3: Minimax convergence rates as functions of discrimina-
tor smoothness σd and distribution function smoothness σg , for (a)
general and (b) linear estimators, in the case dimension D = 4, and
Besov parameters pd = 1.2, pg = 2. Color shows exponent α of mini-

max convergence rate n−α, ignoring polylogarithmic factors.

data such as images. While the proof of Theorem 57 relied on the scheme of Yarot-
sky (2017) for uniformly approximating Hölder functions by fully-connected ReLU
networks, this result relies instead on a similar result of Suzuki (2018) for Besov
functions.

As a visual aid for understanding our results, Figure 8.3 show phase diagrams of
minimax convergence rates, as functions of discriminator smoothness σd and dis-
tribution smoothness σg, in the illustrative case D = 4, pd = 1.2, pg = 2. When
1/pg + 1/pd > 1, a minimum total smoothness σd + σg ≥ D(1/pd + 1/pg − 1) is
needed for consistent estimation to be possible – this fails in the “Infeasible” re-
gion of the phase diagrams. Intuitively, this occurs because Fd is not contained
in the topological dual F ′g of Fg. For linear estimators, even greater smoothness
σd + σg ≥ D(1/pd + 1/pg) is needed. At the other extreme, for highly smooth dis-
criminator functions, both linear and nonlinear estimators converge at the paramet-
ric rate O

(
n−1/2

)
, corresponding to the “Parametric” region. In between, rates for

linear estimators vary smoothly with σd and σg, while rates for nonlinear estimators
exhibit another phase transition on the line σg +3σd = D; to the left lies the “Sparse”
case, in which estimation error is dominated by a small number of large errors at
locations where the distribution exhibits high local variation; to the right lies the
“Dense” case, where error is relatively uniform on the sample space.

8.2 Some further implications of convergence rates for den-
sity estimation under IPMs

8.2.1 Monte Carlo Integration

Numerical integration is a ubiquitous problem, not only in machine learning and
statistics, but also in engineering problems. Unfortunately, conventional determin-
istic numerical integration schemes can quickly become intractable in high dimen-
sions. A common approach, therefore, is Monte Carlo integration, which proceeds
as follows.

For simplicity, suppose one wants to compute an integral of the form If =
∫
X f dλ,

where λ is some finite, non-negative measure (these conditions can be relaxed in
many cases). Let P = λ

λ(X ) denote the probability measure on X that is propor-
tional to λ, and assume we are able to easily sample from P . One can then draw a
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large number of samples X1, · · · , Xn
IID∼ P and estimate If by the empirical mean

Îf := 1
n

∑n
i=1 f(Xi). Our results in Chapters 6 and 7 on distribution estimation un-

der IPMs imply convergence bounds on

E

[
sup
f∈F

∣∣∣If − Îf ∣∣∣
]

for many classes F . In the case of Monte Carlo integration, these convergence rates
can directly determine the computation time needed to achieve a target accuracy.
Moreover, our minimax lower bounds imply that, without additional constraints
on f or λ, these rates are optimal. While improved schemes can be devised for
particular cases of f and λ, the worst-case (sup over f ) bounds that we provide are
useful when If needs to be computed for many distinct f , or when either f or λ is too
complex to model analytically, as often happens, for example, in Bayesian inference
problems (Geweke, 1989).

8.2.2 Distributionally Robust Optimization

Distributionally Robust Optimization (DRO) is an approach to regularizing opti-
mization of functions depending partly on data. Suppose we want to minimize
(in θ) the expectation EX [f(X, θ)] of a function f depending on a random quan-
tity X ∼ P with distribution P . We do not know P , but we observe IID samples

X1, ..., Xn
IID∼ P ; let Pn = 1

n

∑n
i=1 δXi denote the resulting empirical distribution.

One often uses the empirical optimizer

θ̂ := argmin
θ

n∑
i=1

f(Xi, θ) = argmin
θ

E
X∼Pn

[f(X, θ)].

However, this this is susceptible of over-fitting to the data, especially if the function
f is not smooth or otherwise well-behaved. Rather than optimizing purely with re-
spect the empirical distribution, DRO typically optimizes the objective with respect
to the worst case over a set P of “candidate distributions”; specifically,

θ̂P := argmin
θ

sup
P∈P

E
X

[f(X, θ)]. (8.1)

Most often, P is taken to be a ball P = {Q : ρ(Pn, Q) ≤ δ}, in some distance measure
ρ, centered around Pn, with a radius δ acting as a regularization hyperparameter.

The choice of distance ρ in (8.1) is up to the user, and requires considering both
computational and statistical factors, about which I won’t go into detail here. Ex-
amples of distances that have been used in practice are Wasserstein distances (Es-
fahani and Kuhn, 2018; Gao and Kleywegt, 2016; Gao, Xie, Xie, and Xu, 2018),
φ-divergences (Hu and Hong, 2013; Namkoong and Duchi, 2016), and, recently,
MMD (Staib and Jegelka, 2019). On the other hand, the choice of the parameter δ
is primarily guided by how quickly the distance ρ(Pn, P ) decays with n. This is
where our results on density estimation under diverse losses comes in.

To see this, consider the following approach to proving regret bounds for DRO.
Suppose that P ∈ P (I’ll return to this assumption in a moment). Then, by construc-
tion of the DRO estimate θ̂P ,

E
X∼P

[f(X, θ̂P)] ≤ sup
Q∈P

E
X∼Q

[f(X, θ̂P)] ≤ sup
Q∈P

E
X∼Q

[f(X, θ̂)] (8.2)
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Moreover, since, by the triangle inequality, supQinP ρ(P,Q) ≤ 2δ, as long as EX∼Q[f(X, θ̂)]
is smooth in Q (with respect to ρ), then the right-hand side of (8.2) can be bounded
in terms of δ. This latter smoothness condition is fairly mild, and so the key question
becomes: how small can δ be such that P ∈ P (with high probability).

Standard concentration of measure arguments typically imply that ρ(Pn, P ) is
exponentially concentrated around E[ρ(Pn, P )]. Thus, the punchline: δ should typi-
cally be of order E[ρ(Pn, P )] (plus a small high-probability term). For this reason, our
results in Chapters 6 and 7 on distribution estimation, which essentially calculate the
decay rate of E[ρ(Pn, P )], fairly immediately enable the formulation of a whole array
of new DRO schemes. Moreover, besides the use of new distances, our results may
enable the use of smoothing to accelerate convergence rates when P can be assumed
to be somewhat smooth – to the best of our knowledge, this has not been previously
considered.

We end this note with the important caveat that we haven’t discussed computa-
tion of the DRO estimate 8.1, which appears in general to be quite difficult. However,
since somewhat practical approximation schemes have been devised for the cases
when ρ is 1-Wasserstein distance or MMD (see references above), we hope that our
results may motivate someone to come up with an approximate scheme for comput-
ing DRO estimates based on other IPM or Wasserstein distances.

8.3 Asymptotic Distributions for BCF-k Estimators

In this section, I will briefly describe some preliminary on the asymptotic distribu-
tions of BCF-k Estimators. Currently, my results are limited to estimation of entropy
and KL divergence, but I have begun trying to generalize these results to other func-
tionals.

Lemma 64. Suppose that we observe 2n IID samples X1, ..., Xn, Y1, ..., Yn
IID∼ P from a

probability distribution P on [0,∞). Let Zn := min{X1,...,Xn}
min{Y1,...,Yn} denote the ratio of the minima

of the two samples. Assume the right-sided limit

p0 := lim
r↓0

P ([0, r))

r
∈ (0,∞)

exists and is positive and finite, and that P has sub-exponential tails. Then, Zn converges in
distribution to a half-Cauchy random variable; specifically,

Zn
D→ |Z|, where Z ∼ Cauchy(0, π).

Corollary 65. Suppose that we observe 2n IID samples X1, ..., Xn, Y1, ..., Yn
IID∼ P from

a probability distribution P on RD. Fix any x ∈ RD and k ∈ [n], and let εk(x) denote
the distance from x to its kth-nearest neighbor in {X1, ..., Xn}, and let δk(x) denote the
distance from x to its kth-nearest neighbor in {Y1, ..., Yn}. Suppose that the distributions
of εk(x) and δk(x) are absolutely continuous with respect to Lebesgue measure on R. Then,
assuming P has sub-exponential tails and has intrinsic dimension d around x (i.e., that
P (Br(x)) � rd for small r), letting Zn := εd1(x)/εd1(x),Zn converges in distribution to a
half-Cauchy random variable; specifically,

Zn
D→ |Z|, where Z ∼ Cauchy(0, π).
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This simple asymptotic distribution suggests a fast (both permutation-free and
parameter-free) nonparametric approach to testing whether two densities are equal
at a particular point x ∈ X . However, it is not immediately clear how to extend this
to testing equality of entire distributions, as the different Z-statistics above will be
dependent, given a particular data set. One option is to split the samples into sub-
samples, using, say, X1, ..., Xk to compute the k-NN statistic around a test point x1,
Xk+1, ..., X2k, to compute the k-NN statistic around a test point x2, etc., and then ag-
gregate the resulting statistics according to a product of bn/kc Cauchy distributions
to compute a final p-value. Alternatively, for sufficiently sparsely selected test points
xj , one may be able to formalize the intuitive idea that these statistics are asymptoti-
cally independent even when the full sample X1, ..., Xn is used to calculate the final
statistic. This would in turn suggest a computationally efficient test for global equal-
ity. Further work would be needed to understand the statistical properties of such a
test.
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Appendix A

Other Projects

Besides the estimation of probability distributions and their functionals, I’ve stud-
ied a few other topics during the course of my doctoral studies at CMU. These are
quite unrelated to the core topics of this thesis, and are primarily collaborations with
applied researchers in other fields, although my contributions are primarily from
the direction of mathematical modeling, machine learning, and statistics. Hence,
although they are not meant to be part of this thesis work, I have included brief
sections describing these project.

A.1 Distributed Gradient Descent and Bacterial Foraging

Communication and coordination play a major role in the ability of bacterial cells to
adapt to ever changing environments and conditions. Recent work has shown that
such coordination underlies several aspects of bacterial responses including their
ability to develop antibiotic resistance. In this work, we developed a novel dis-
tributed gradient descent algorithm to model how bacterial cells collectively search
for food in harsh environments using extremely limited communication and com-
putational complexity. We explored the behavior of the model in simulated physical
environments with obstacles, as illustrated in Figure A.1. Such an algorithm can
also be used for computational tasks when agents are facing similarly restricted con-
ditions. We formalized the communication and computation assumptions required
for successful coordination and proved that the proposed algorithm converges to a
stationary point even under a dynamically changing interaction network. The pro-
posed method elaborates on upon a prior model of Shklarsh, Ariel, Schneidman,
and Ben-Jacob (2011) for bacterial foraging, while making fewer assumptions on the
inherent computational abilities of bacterial cells. Simulation studies and analysis
of experimental data illustrate the ability of the method to predict several aspects of
bacterial swarm food search.

This work was supervised by Professor Ziv Bar-Joseph in the Computational
Biology Department (CBD) at CMU, with considerable input from Saket Navlakha
(now and assistant professor at the Salk Institute), when he was doing a post-doc
with Ziv. Later parts of the project, including comparison with biological lab exper-
iments, were completed by Sabrina Rashid, a doctoral student in CBD under Ziv.

Early parts of this work were published and presented at RECOMB 2016 (Singh,
Rashid, Long, Navlakha, Salman, Oltvai, and Bar-Joseph, 2016). More recently Sab-
rina Rashid has continued work based on my initial model, in two lines of work. The
first, published in Swarm and Evolutionary Computation (Rashid, Singh, Navlakha,
and Bar-Joseph, 2019), compared distributed optimization in bacterial swarms with
that in human crowds; a Java simulation I implemented supporting this work can be
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FIGURE A.1: Terrain model for bacterial food search. Obstacles are
placed are regular intervals, and the food source is at the center of
the region; contours display the diffusion of the food source gradient.
The bacterial swarm, in the bottom right area, is depicted as a set of

black points, each corresponding to an individual cell.

found here. The second, published in the Proceedings of the National Academy of Sci-
ences (Rashid, Long, Singh, Kohram, Vashistha, Navlakha, Salman, Oltvai, and Bar-
Joseph, 2019) compared the predictions of our model with experiments (performed
by Zhicheng Long, Maryam Kohram, Harsh Vashistha, Hanna Salman, and Zoltan
Oltvai at the University of Pittsburgh) using real E. coli swarms in custom-fabricated
microfluidic devices; in the context of our model, results indicate that bacteria are
able to accelerate chemotactic foraging by adjusting tumbling rates in response to
the presence of environmental obstacles. While no biological mechanism is currently
known to directly modulate tumbling rates, discovering such a mechanism would
imply that E. coli possess some form of operational short-term memory.

A.2 Sequence-based Prediction of Enhancer-Promoter Inter-
actions

In the human genome, a large number of distal enhancers and proximal promoters
form enhancer-promoter interactions (EPI) to regulate target genes. Although recent
high-throughput genome-wide mapping approaches have allowed us to more com-
prehensively identify potential EPI, it is still largely unknown whether sequence-
based features alone are sufficient to predict such interactions. In this work, we de-
veloped a new computational methods (named PEP and SPEID, pronounced “speed”)
to predict EPI based on sequence-based features only, when the locations of putative
enhancers and promoters in a particular cell type are given. PEP utilizes two mod-
ules (PEP-Motif and PEP-Word) based on different but complementary strategies
for extracting feature from sequence information. SPEID, which is illustrated in Fig-
ure A.2, utilizes a deep learning model, based on convolutional and recurrent neural
network layers. Results across six different cell types demonstrated that our meth-
ods are effective in predicting EPI, as compared to the state-of-the-art methods that

https://github.com/sss1/swarms
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FIGURE A.2: Schematic of the deep learning model, SPEID, that we
designed to predict enhancer-promoter interactions from DNA se-
quence. Key steps involving rectification, batch normalization, and
dropout are annotated. Note that the final output step is essentially a
logistic regression in SPEID which provides a probability to indicate
whether the input enhancer element and promoter element interact.

use functional genomic signals. Our work demonstrated that sequence-based fea-
tures alone can reliably predict enhancer-promoter interactions genome-wide, which
could potentially facilitate the discovery of important sequence determinants for
long-range gene regulation. The source code of PEP is available here, and source
code of SPEID is available here.

This work was supervised by Professor Jian Ma in CBD. PEP was implemented
and tested by Yang Yang and Ruochi Zhang, doctoral students in CBD under Jian.
SPEID was implemented and tested by me, but Yang Yang performed substantial
parts of the downstream analysis. PEP was published in ISMB 2017 (Yang, Zhang,
Singh, and Ma, 2017), and SPEID was published in Quantitative Biology (Singh, Yang,
Póczos, and Ma, 2019).

A.3 Reconstruction Risk of Convolutional Sparse Dictionary
Learning

Sparse dictionary learning (SDL) has become a popular method for learning parsi-
monious representations of data, a fundamental problem in machine learning and
signal processing. While most work on SDL assumes a training dataset of indepen-
dent and identically distributed (IID) samples, a variant known as convolutional
sparse dictionary learning (CSDL) relaxes this assumption to allow dependent, non-
stationary sequential data sources (e.g., audio, language, DNA/(epi)genomic fea-
tures), as illustrated in Figure A.3. Recent work has explored statistical properties
of IID SDL, however, the statistical properties of CSDL remain largely unstudied.
In this paper, we identified minimax rates of CSDL in terms of reconstruction risk,
providing both lower and upper bounds, in a variety of settings. Our results made

https://github.com/ma-compbio/PEP
https://github.com/ma-compbio/SPEID
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True Data (R ⊗ D)Patterns (D)Encoding (R)

✱

✱

FIGURE A.3: Illustration of how, in a convolutional dictionary model,
a long, rich signal (“True Data”, black) can be decomposed into a sum
of convolutions of long, sparse signals (“Encoding”, red/blue) with

short, simple signals (“Patterns”, orange/green).

minimal assumptions, allowing arbitrary dictionaries and showing that CSDL is ro-
bust to dependent noise. We also compared our results to similar results for IID SDL
and verify our theory with synthetic experiments.

Specific technical results explored the exact dependence of (minimax) conver-
gence rates on the assumptions of noise structure; both empirically and theoreti-
cally, we showed that minimax rates improve significantly when noise is indepen-
dent across time/space, but that convergence rates decay as noise is allowed to ex-
hibit dependence over longer distances. These distinctions are quite important, for
example, in image processing applications, where noise (e.g., in the form of discol-
orations, scratches, or stains) is usually quite structured and hence likely to much
more strongly correlated between nearby pixels than between distant pixels.

This work was supervised by Professor Jian Ma in CBD, as well as by my advisor,
Professor Póczos. These results were published in AISTATS 2018 (Singh, Póczos,
and Ma, 2018). Work is ongoing to apply CSDL to discover patterns in functional
genomics data, and to extend our theoretical results to hierarchical convolutional
models (resembling multi-layer convolutional neural networks).

A.4 A Hidden Markov Model for Eye-Tracking Data Analy-
sis

Before Trial During Trial After Trial

FIGURE A.4: An example trial of the standard TrackIt task (endoge-
nous condition), on a 4 × 4 grid with 4 distractor objects. The target
object here is the grey triangle, as indicated before the trial. Videos
of example TrackIt trials can be found at https://github.com/

sss1/eyetracking/tree/master/videos.

https://github.com/sss1/eyetracking/tree/master/videos
https://github.com/sss1/eyetracking/tree/master/videos
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Eye-tracking provides an opportunity to generate and analyze high-density data
relevant to understanding cognition. However, while events in the real world are of-
ten dynamic, eye-tracking paradigms are typically limited to assessing gaze toward
static objects.In this study, we propose a generative framework, based on a hidden
Markov model (HMM), for using eye-tracking data to analyze behavior in the con-
text of multiple moving objects of interest. We apply this framework to analyze data
from a recent visual object tracking task paradigm, TrackIt (shown in Figure A.4), for
studying selective sustained attention in children. Within this paradigm, we present
two validation experiments to show that the HMM (illustrated in Figure A.5) pro-
vides a viable approach to studying eye-tracking data with moving stimuli, and
to illustrate the benefits of the HMM approach over some more naive possible ap-
proaches. The first experiment utilizes a novel ‘supervised’ variant of TrackIt, while
the second compares directly with judgments made by human coders using data
from the original TrackIt task. Our results suggest that the HMM-based method
provides a robust analysis of eye-tracking data with moving stimuli, both for adults
and for children as young as 3.5-6 years old.

Observation 1 Observation 2 Observation 3

S(1) S(2) S(3)

X(1) X(2) X(3)

Hidden State 1 Hidden State 2 Hidden State 3

(a) (b)

FIGURE A.5: (a) Graphical model schematic of HMM. The initial state
(object) S(1) is sampled uniformly at random. At each time point t,
we observe a gaze data point X(t), distributed according to a Gaus-
sian centered around the state S(t). At the next time point t + 1, a
new state S(t + 1) is sampled according to a distribution depending
on S(t), and the process repeats. (b) Example conditional distribution

of E(t) given S(t) = “Blue Moon”.

This work was supervised by Professors Erik Thiessen and Anna Fisher in the
Psychology Department at CMU. The experiment and analyses were designed, and
the paper written, in collaboration with Jaeah Kim, a doctoral student in Psychol-
ogy under Erik and Anna. Anna Vande Velde and Emily Keebler contributed to the
experiment design and data collection. A recent version of this work (Kim, Singh,
Thiessen, and Fisher, 2019) has been submitted to Behavior Research Methods and is
under revision, while early versions were presented at CogSci 2018 and 2019 (Kim,
Singh, Vande Velde, Thiessen, and Fisher, 2018). Further work is underway, apply-
ing the HMM framework to study attention development in children, and to gen-
eralize the framework beyond the TrackIt environment to arbitrary video stimuli
(including, e.g., videos collected by head-mounted eye-trackers), leveraging recent
advances in dynamic object detection based on deep learning.
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Input

Original Conv DS Conv Shift

α1 α2 α3+ + =   1

Output

FIGURE A.6: Example of a “cell” (here, a mixture of a full convolu-
tion, a depthwise separable (DS) convolution, and a shift operation),
used as the basic network building block in DARC. A cost-weighted
`1 penalty is placed on α during training. After training, operations

with corresponding αj = 0 are removed from the network.

A.5 DARC: Differentiable Architecture Compression

In many learning situations, resources at inference time are significantly more con-
strained than resources at training time. This paper studies a general paradigm,
called Differentiable ARchitecture Compression (DARC), that combines model com-
pression and DARTS, a neural architecture search method proposed by Liu, Simonyan,
and Yang (2018), to learn models that are resource-efficient at inference time. Given a
resource-intensive base architecture, DARC utilizes the training data to learn which
sub-components can be replaced by cheaper alternatives. For example, convolu-
tions, which dominate the computation and memory demands of most deep net-
works for computer vision tasks, can often be approximated by smaller, faster op-
erations, such as depthwise-separable convolutions (Jaderberg, Vedaldi, and Zisser-
man, 2014) or shifts Wu, Wan, Yue, Jin, Zhao, Golmant, Gholaminejad, Gonzalez,
and Keutzer (2018). The basic mechanism of DARC is simple: in each layer, we
train not only a single operation (e.g., a convolution), but rather a mixture of opera-
tions, called a “cell”, which, besides the original convolution, can contain depthwise-
separable convolutions, shifts, perhaps identity operations (which can then be re-
moved entirely), etc.); an example of such a cell is given in Figure A.6. During train-
ing, we impose an `1 penalty, weighted by the computational (e.g., time or memory)
cost of that operation, encouraging the network to assign 0 mixture weights to un-
necessarily expensive operations, which can then be removed from the network. The
high-level technique can be applied to any neural architecture, and we report experi-
ments on state-of-the-art convolutional neural networks for image classification. We
also give theoretical Rademacher complexity bounds in simplified cases, showing
how DARC avoids overfitting despite over-parameterization.

This research was performed with Ashish Khetan and Zohar Karnin, while I was
an intern hosted by Zohar at Amazon (New York). The paper (Singh, Khetan, and
Karnin, 2019) has been submitted to a machine learning conference.
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Appendix B

A Condensed Summary of Results
on Density Functional Estimation

This appendix, written primarily for my own organizational needs, provides a con-
densed tabular reference for all our results on density functional estimation, as well
as some results due to others.

Below, we list, for reference, all of the assumptions made in the various portions
of this thesis devoted to density functional estimation. Table B.1 indicates which of
these assumptions we utilize, for each functional and estimator of interest.

(D) The probability distribution P has a density p : X → [0,∞).

(s-H) p is s-Hölder continuous (s > 0). Specifically, is t is the greatest integers strictly
less than s, then p is t-times (strongly) differentiable, and f (t) ∈ L∞ for .any
This is equivalent to the Sobolev space condition f ∈W s,∞.

(s-S) p lies in the s-Sobolev-Hilbert spaces Hs (s > 0). This is equivalent to the
Sobolev space condition f ∈W s,2.

(LB) p is lower bounded away from 0; i.e., infx∈X p(x) > 0.

(B) p is well-behaved near the boundary of X ; typically, this means either a peri-
odic or vanishing-derivative boundary condition. Usually, it is also required
that the sample space X is known.

(Fr2) The functional F : P → R is twice-Fréchet differentiable.

(NPN) p is a nonparanormal distribution (i.e., has a Gaussian copula)

(s-SM) The 1-dimensional marginals of p are s-Sobolev (see assumption s-S above).

(d-PCN) The ε-covering number of r-bounded subsets of the metric space (X , ρ) grows
at most polynomially, of order d, with (r/ε)d. Specifically, for any x ∈ X , the
covering numberNBx(r) : (0,∞)→ N of the ballBx(r) := {y ∈ X : ρ(x, y) < r}
of radius r ∈ (0,∞) centered at x is of order

NBx(r)(ε) ∈ O
((r

ε

)d)
,

where

NBx(r)(ε) := inf {|S| : S ⊆ X such that, ∀z ∈ Bx(r), ∃y ∈ S with ρ(z, y) < ε}

denotes the size of the smallest ε-cover of Bx(r). Note that this assumption
holds whenever, X ⊆ Rd, although it may also hold when X ⊆ RD (if the sup-
port of P has lower intrinsic dimension d) or for non-Euclidean metric spaces.
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Our results on convergence in Wasserstein distance actually hold for more gen-
eral covering numbers, but it is more difficult to express a closed form for the
convergence rate, and we thus consider this simplified form here.

(`-MM) P has a finite `th metric moment

m`(P ) := inf
x∈X

(
E

Y∼P

[
(ρ(x, Y ))`

])1/`

<∞.

When (X , ρ) is Euclidean, m` corresponds to the usual centered `th moment of
P .
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