Introduction

Old Model New Model Extensions Bacteria Swarm Foraging Computational Problem Statement

Low-Communication Distributed Optimization via E. Coli Swarm Foraging

Shashank Singh ¹ Saket Navlakha ² Ziv Bar-Joseph¹

2nd Workshop on Biological Distributed Algorithms

October 12, 2014

¹Carnegie Mellon University, Pittsburgh, PA, USA

²Salk Institute for Biological Studies, La Jolla, CA, USA 🗇 🛛 🖘 🖘 💿 🔗

Bacteria Swarm Foraging Computational Problem Statement

Differences from Insect Foraging

Insect Colonies	Bacteria Swarms
agents move food to colony	swarm moves to food
fixed pheromone trails	diffusing protein signals
nurses, foragers, queen, etc.	identical cells
complex navigation abilities	no navigation ability

Bacteria Swarm Foraging Computational Problem Statement

Bacteria Swarm Foraging

- Food source which diffuses with density
 f : ℝ² → ℝ throughout solution
- Obstacles
- Bacteria swarms (typically 1-4 swarms of 20-50 agents each)

Bacteria Swarm Foraging Computational Problem Statement

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Computational Problem

Several nodes each want to maximize the same objective function:

 $\max_{x\in S\subseteq \mathbb{R}^d}f(x).$

• can evaluate f, but don't know its form

Bacteria Swarm Foraging Computational Problem Statement

イロト 不得 トイヨト イヨト 三日

Computational Problem

Several nodes each want to maximize the same objective function:

 $\max_{x\in S\subseteq \mathbb{R}^d}f(x).$

- can evaluate f, but don't know its form
- S and f typically non-convex
 - Can have small local maxima

Bacteria Swarm Foraging Computational Problem Statement

イロト 不得 トイヨト イヨト 三日

Computational Problem

Several nodes each want to maximize the same objective function:

 $\max_{x\in S\subseteq \mathbb{R}^d}f(x).$

- can evaluate f, but don't know its form
- S and f typically non-convex
 - Can have small local maxima
- Individual nodes computationally weak

Bacteria Swarm Foraging Computational Problem Statement

Computational Problem

Several nodes each want to maximize the same objective function:

 $\max_{x\in S\subseteq \mathbb{R}^d}f(x).$

- can evaluate f, but don't know its form
- S and f typically non-convex
 - Can have small local maxima
- Individual nodes computationally weak
- Nodes can broadcast (small) messages to nearby nodes

Introduction Old Model Repulsion New Model Extensions

Individual and Swarm Movement

Individual Movement (Tumbling)

Each iteration, each agent perturbs its direction based on previous change in food density:

$$\delta = f(x_t, y_t) - f(x_{t-1}, y_{t-1})$$

 $\theta \to \theta + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$,

Individual and Swarm Movement Repulsion Attraction Orientation

Individual Movement (Tumbling)

This works, but very inefficiently:

Introduction Individual and Swarm Movement Old Model Repulsion New Model Attraction Extension Orientation

Basic Swarm Movement (Shklarsh et al., 2011)

On each iteration, each agent combines its (perturbed) velocity with the influence of the swarm

 $v_{i,t+1} = w_v R_{\varepsilon} v_{i,t} + \begin{cases} w_r r_{i,t} & \text{if any neighbors are too close} \\ w_a a_{i,t} + w_\omega \omega_{i,t} & \text{else} \end{cases}$

Introduction Individual and Swarm Movement Old Model Repulsion New Model Attraction Extensions Orientation

Basic Swarm Movement (Repulsion)

Avoid collisions and spread out to cover area

$$r_{i,t} = \sum_{x_{j,t} \in B_{RR}(x_i)} \frac{x_{j,t} - x_{i,t}}{\|x_{j,t} - x_{i,t}\|}.$$

Introduction Individual and Swarm Movement Old Model Repulsion New Model Attraction Extension Orientation

Basic Swarm Movement (Attraction)

Stay together as a group

$$m{a}_{i,t} = \sum_{x_{j,t} \in B_{RA}(x_i) \setminus B_{RO(x_i)}} rac{x_{j,t} - x_{i,t}}{\|x_{j,t} - x_{i,t}\|}.$$

Introduction	Individual and Swarm Movement
Old Model	Repulsion
New Model	Attraction
Extensions	Orientation

Basic Swarm Movement (Orientation)

Move similarly to your neighbors

$$\omega_{i,t} = \sum_{x_{j,t} \in B_{RO}(x_i)} \frac{\mathsf{v}_{j,t}}{\|\mathsf{v}_{j,t}\|}.$$

Introduction	Individual and Swarm Movement
Old Model	Repulsion
New Model	Attraction
Extensions	Orientation

Basic Swarm Movement (Orientation)

Move similarly to your neighbors

$$\omega_{i,t} = \sum_{x_{j,t} \in B_{RO}(x_i)} \frac{v_{j,t}}{\|v_{j,t}\|}.$$

• Accelerates swarm when the correct direction is clear

Introduction	Individual and Swarm Movement
Old Model	Repulsion
New Model	Attraction
Extensions	Orientation

Basic Swarm Movement (Orientation)

Move similarly to your neighbors

$$\omega_{i,t} = \sum_{x_{j,t} \in B_{RO}(x_i)} \frac{v_{j,t}}{\|v_{j,t}\|}.$$

э

- Accelerates swarm when the correct direction is clear
- Helps "smooth" interactions by preventing collisions.

Introduction Individual and Swarm Movement Old Model Repulsion New Model Attraction Extension Orientation

Basic Swarm Movement (Shklarsh et al.)

Again,

$$w_{i,t+1} = w_v R_{\varepsilon} v_{i,t} + \begin{cases} w_r r_{i,t} & \text{if any neighbors are too close} \\ w_a a_{i,t} + w_\omega \omega_{i,t} & \text{else} \end{cases}$$

Issues and Fixes Efficient Communication Model Experimental Results

Issues

The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction.

Issues and Fixes Efficient Communication Model Experimental Results

・ロット (四)・ (日)・ (日)・

Issues

The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction.

$$a_{i,t} = \sum_{x_{j,t} \in B_{RA}(x_i) \setminus B_{RO(x_i)}} \frac{x_{j,t} - x_{i,t}}{\|x_{j,t} - x_{i,t}\|} \quad \text{and} \quad \omega_{i,t} = \sum_{x_{j,t} \in B_{RO}(x_i)} \frac{v_{j,t}}{\|v_{j,t}\|}$$

• Messages can be continuous (e.g., floats)

Issues and Fixes Efficient Communication Model Experimental Results

・ロット (四)・ (日)・ (日)・

Issues

The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction.

$$a_{i,t} = \sum_{x_{j,t} \in B_{RA}(x_i) \setminus B_{RO(x_i)}} \frac{x_{j,t} - x_{i,t}}{\|x_{j,t} - x_{i,t}\|} \quad \text{and} \quad \omega_{i,t} = \sum_{x_{j,t} \in B_{RO}(x_i)} \frac{v_{j,t}}{\|v_{j,t}\|}$$

Messages can be continuous (e.g., floats)
Real bacteria send protein signals of only a few bits

Issues and Fixes Efficient Communication Model Experimental Results

Issues

The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction.

$$a_{i,t} = \sum_{x_{j,t} \in B_{RA}(x_i) \setminus B_{RO(x_i)}} \frac{x_{j,t} - x_{i,t}}{\|x_{j,t} - x_{i,t}\|} \quad \text{and} \quad \omega_{i,t} = \sum_{x_{j,t} \in B_{RO}(x_i)} \frac{v_{j,t}}{\|v_{j,t}\|}$$

Messages can be continuous (e.g., floats)
Real bacteria send protein signals of only a few bits
Receiver's measurements can be arbitrarily large

Issues and Fixes Efficient Communication Model Experimental Results

Issues

The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction.

$$a_{i,t} = \sum_{x_{j,t} \in B_{RA}(x_i) \setminus B_{RO(x_i)}} \frac{x_{j,t} - x_{i,t}}{\|x_{j,t} - x_{i,t}\|} \quad \text{and} \quad \omega_{i,t} = \sum_{x_{j,t} \in B_{RO}(x_i)} \frac{v_{j,t}}{\|v_{j,t}\|}$$

Messages can be continuous (e.g., floats)
Real bacteria send protein signals of only a few bits
Receiver's measurements can be arbitrarily large
Real bacteria distinguish only a few levels

Issues and Fixes Efficient Communication Model Experimental Results

Discretization and Thresholding

- Introduce a thresholding discretization function:
 - For T > 0, $L \in \mathbb{N}$, $||D_{L,T}(x)|| = \min\{T, \lfloor L ||x|| \rfloor / L\}$.
 - Approximate vectors by cardinal vectors to discretize direction

Issues and Fixes Efficient Communication Model Experimental Results

イロト イポト イヨト イヨト 三日

Issues (Cont.)

The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction (repulsion is ok).

• Agents can identify message senders (dedicated channels)

- Requires log(n) extra bits per message
- Swarm can be dynamic
- Real bacteria broadcast to their neighbors

Issues and Fixes Efficient Communication Model Experimental Results

Issues (Cont.)

The Basic Swarm Movement model makes unrealistic assumptions about how bacteria communicate orientation and attraction (repulsion is ok).

- Agents can identify message senders (dedicated channels)
 - Requires log(n) extra bits per message
 - Swarm can be dynamic
 - Real bacteria broadcast to their neighbors
- Ability to communicate is unaffected by distance <=> <=> > = ∽٩@

Issues and Fixes Efficient Communication Model Experimental Results

Distance Weighting

- Broadcast messages, but weight communication by distance
 - Messages decay exponentially with distance:

$$w_a(x) = \exp(-c_a x), \quad w_\omega(x) = \exp(-c_\omega x) \quad (c_\omega > c_a)$$

Issues and Fixes Efficient Communication Model Experimental Results

Efficient Communication Model

• Discretize after weighting:

$$a_{i,t} = \sum_{j=1}^{n} D_{L,T} \left(w_a(\|x_j - x_i\|) \frac{(x_j - x_i)}{\|x_j - x_i\|} \right)$$
$$\omega_{i,t} = \sum_{j=1}^{n} D_{L,T} \left(w_a(\|v_{j,t}\|) \frac{v_j}{\|v_j\|} \right)$$

Recall

$$v_{i,t+1} = w_v v_{i,t} + \begin{cases} w_r r_{i,t} & \text{if any neighbors are too close} \\ w_a a_{i,t} + w_\omega \omega_{i,t} & \text{else} \end{cases}$$

Issues and Fixes Efficient Communication Model Experimental Results

Experimental Results

Path Length

Adaptive Listening Silent Agents

・ロット (四)・ (日)・ (日)・

Adaptive Listening

Help if you're making progress, get help if you're stuckweight current velocity based on performanceModified model:

$$v_t = w(\delta) \cdot v_{t-1} + (1 - w(\delta))u,$$

where w is increases with $\delta = f(x_t, y_t) - f(x_{t-1}, y_{t-1})$.

Adaptive Listening Silent Agents

イロト 不得 トイヨト イヨト 三日

Silent Agents

- broadcasting messages takes energy
- many messages are redundant
- under scarce resources, may not want to help competition

Adaptive Listening Silent Agents

イロト 不得 トイヨト イヨト 三日

Silent Agents

- broadcasting messages takes energy
- many messages are redundant
- under scarce resources, may not want to help competition

Modified model: For some $p_s \in [0, 1]$, each agent is silent with probability p_s .

Adaptive Listening Silent Agents

Experimental Results: Silent Agents

Very few agents actually need to communicate!

Adaptive Listening Silent Agents

イロト 不得 トイヨト イヨト 三日

- Primitive bacteria solve computationally challenging problems collectively
- Swarm communication is helpful even under highly restricted communication
 - Agents need only broadcast a few bits
 - Signals only need need to travel short distances
 - Only some agents need to communicate

Adaptive Listening Silent Agents

イロト イポト イヨト イヨト 三日

Future Work

- Consider competition (finite food sources)
- Multiple food sources/mixed objectives
 - Agents can have different preferences
- Compare to biological model
 - Can identify genes responsible for communication?
 - How is orientation really communicated?
- Theory
 - Convergence rates
 - Lower bounds

Adaptive Listening Silent Agents

Thanks!

Simulation code is available on GitHub.

・ロト・日本・日本・日本・日本・日本