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Differences from Insect Foraging

Insect Colonies Bacteria Swarms

agents move food to colony swarm moves to food

fixed pheromone trails diffusing protein signals

nurses, foragers, queen, etc. identical cells

complex navigation abilities no navigation ability
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Bacteria Swarm Foraging

Food source which
diffuses with density
f : R2 → R throughout
solution
Obstacles
Bacteria swarms
(typically 1-4 swarms of
20-50 agents each)
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Computational Problem

Several nodes each want to maximize the same objective function:

max
x∈S⊆Rd

f (x).

can evaluate f , but don’t know its form

S and f typically non-convex
Can have small local maxima

Individual nodes computationally weak
Nodes can broadcast (small) messages to nearby nodes
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Individual Movement (Tumbling)

Each iteration, each agent perturbs its direction based on previous
change in food density:

δ = f (xt , yt)− f (xt−1, yt−1)

θ → θ+ε, where ε ∼ N (0, σ2),

σ ∝ max {0, 1− δ} .
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Individual Movement (Tumbling)

This works, but very inefficiently:
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Basic Swarm Movement (Shklarsh et al., 2011)
On each iteration, each agent combines its (perturbed) velocity
with the influence of the swarm

vi ,t+1 = wv Rεvi ,t+

{
wr ri ,t if any neighbors are too close
waai ,t + wωωi ,t else
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Basic Swarm Movement (Repulsion)
Avoid collisions and spread out to cover area

ri ,t =
∑

xj,t∈BRR(xi )

xj,t − xi ,t
‖xj,t − xi ,t‖

.
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Basic Swarm Movement (Attraction)

Stay together as a group

ai ,t =
∑

xj,t∈BRA(xi )\BRO(xi )

xj,t − xi ,t
‖xj,t − xi ,t‖

.
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Basic Swarm Movement (Orientation)
Move similarly to your neighbors

ωi ,t =
∑

xj,t∈BRO(xi )

vj,t
‖vj,t‖

.

Accelerates swarm when the correct direction is clear
Helps “smooth” interactions by preventing collisions.
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Basic Swarm Movement (Shklarsh et al.)
Again,

vi ,t+1 = wv Rεvi ,t+

{
wr ri ,t if any neighbors are too close
waai ,t + wωωi ,t else
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Issues

The Basic Swarm Movement model makes unrealistic assumptions
about how bacteria communicate orientation and attraction.

ai ,t =
∑

xj,t∈BRA(xi )\BRO(xi )

xj,t − xi ,t
‖xj,t − xi ,t‖

and ωi ,t =
∑

xj,t∈BRO(xi )

vj,t
‖vj,t‖

Messages can be continuous (e.g., floats)
Real bacteria send protein signals of only a few bits

Receiver’s measurements can be arbitrarily large
Real bacteria distinguish only a few levels
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Discretization and Thresholding

Introduce a thresholding discretization function:
For T > 0, L ∈ N, ‖DL,T (x)‖ = min{T , bL‖x‖c/L}.
Approximate vectors by cardinal vectors to discretize direction

13/23



Introduction
Old Model

New Model
Extensions

Issues and Fixes
Efficient Communication Model
Experimental Results

Issues (Cont.)
The Basic Swarm Movement model makes unrealistic assumptions
about how bacteria communicate orientation and attraction
(repulsion is ok).

Agents can identify message senders (dedicated channels)
Requires log(n) extra bits per message
Swarm can be dynamic
Real bacteria broadcast to their neighbors

Ability to communicate is unaffected by distance
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Distance Weighting
Broadcast messages, but weight communication by distance

Messages decay exponentially with distance:
wa(x) = exp(−cax), wω(x) = exp(−cωx) (cω > ca)

15/23



Introduction
Old Model

New Model
Extensions

Issues and Fixes
Efficient Communication Model
Experimental Results

Efficient Communication Model

Discretize after weighting:

ai ,t =
n∑

j=1
DL,T

(
wa(‖xj − xi‖)

(xj − xi)

‖xj − xi‖

)

ωi ,t =
n∑

j=1
DL,T

(
wa(‖vj,t‖)

vj
‖vj‖

)

Recall

vi ,t+1 = wv vi ,t+

{
wr ri ,t if any neighbors are too close
waai ,t + wωωi ,t else
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Experimental Results

Path Length
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Adaptive Listening

Help if you’re making progress, get help if you’re stuck
weight current velocity based on performance

Modified model:

vt = w(δ) · vt−1 + (1− w(δ))u,

where w is increases with δ = f (xt , yt)− f (xt−1, yt−1).
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Silent Agents

broadcasting messages takes energy
many messages are redundant
under scarce resources, may not want to help competition

Modified model: For some ps ∈ [0, 1], each agent is silent with
probability ps .
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Experimental Results: Silent Agents

Very few agents actually need to communicate!
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Summary

Primitive bacteria solve computationally challenging problems
collectively
Swarm communication is helpful even under highly restricted
communication

Agents need only broadcast a few bits
Signals only need need to travel short distances
Only some agents need to communicate
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Future Work

Consider competition (finite food sources)
Multiple food sources/mixed objectives

Agents can have different preferences
Compare to biological model

Can identify genes responsible for communication?
How is orientation really communicated?

Theory
Convergence rates
Lower bounds
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Thanks!

Simulation code is available on GitHub.
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