Convolutional SDL

Theoretical Results

On the Reconstruction Risk of Convolutional Sparse Dictionary Learning

Shashank Singh, Barnabás Póczos, Jian Ma

Carnegie Mellon University

4 Oct. 2017 Allerton Conference

- Sparsity is key to high-dimensional problems.
- Many data have unknown sparse representations.
- Sparse dictionary learning models data using sparse linear combinations.
- Many data have different sparse structure.
 - Naturalistic data are often convolutionally sparse.
 - Consistent local patterns in different positions.
 - Images, speech, genomic data, etc.
 - Several benefits of incorporating this structure into the model:
 - Faster computation
 - Greater interpretability
 - Reduced error

- Sparsity is key to high-dimensional problems.
- Many data have unknown sparse representations.

Sparse dictionary learning models data using sparse linear combinations.

- Many data have different sparse structure.
 - Naturalistic data are often convolutionally sparse.
 - Consistent local patterns in different positions.
 - Images, speech, genomic data, etc.
 - Several benefits of incorporating this structure into the model:
 - Faster computation
 - Greater interpretability
 - Reduced error

- Sparsity is key to high-dimensional problems.
- Many data have unknown sparse representations.
- Sparse dictionary learning models data using sparse linear combinations.
- Many data have different sparse structure.
 - Naturalistic data are often convolutionally sparse.
 - Consistent local patterns in different positions.
 - Images, speech, genomic data, etc.
 - Several benefits of incorporating this structure into the model :
 - Faster computation
 - Greater interpretability
 - Reduced error

- Sparsity is key to high-dimensional problems.
- Many data have unknown sparse representations.
- Sparse dictionary learning models data using sparse linear combinations.
- Many data have different sparse structure.
 - Naturalistic data are often convolutionally sparse.
 - Consistent local patterns in different positions.
 - Images, speech, genomic data, etc.
 - Several benefits of incorporating this structure into the model:
 - Faster computation
 - Greater interpretability
 - Reduced error

Decompose data matrix $X \in \mathbb{R}^{d \times N}$ into $X \approx DR$, where

- (a) Dictionary $D \in \mathbb{R}^{d \times K}$
- (b) Encoding $R \in \mathbb{R}^{K \times N}$ is sparse

Example with N = 1:

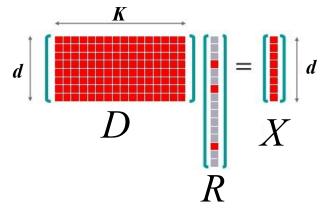


Image Credit : Manchor Ko

Convolutional SDL

Theoretical Results

The wrong model for many data...

Example: IID SDL with Images

Convolutional SDL

Theoretical Results

The wrong model for many data...

Example: IID SDL with Images

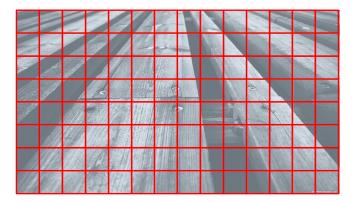
Images are locally sparse, but not globally sparse.

Convolutional SDL

Theoretical Results

The wrong model for many data...

Example: IID SDL with Images



Images are locally sparse, but not globally sparse.

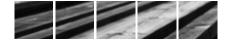
Convolutional SDL

Theoretical Results

6/17

The wrong model for many data ...

Example: IID SDL with Images



Convolutional SDL

Theoretical Results

The wrong model for many data...

Dictionary Learned by IID SDL

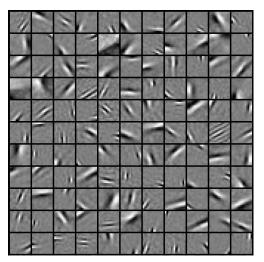


Image Credit : Olshausen & Field (1996)

The wrong model for many data ...

Dictionary Learned by IID SDL

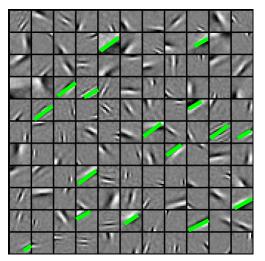


Image Credit : Olshausen & Field (1996)

Convolutional Sparse Dictionary Learning

Highly redundant dictionary

The wrong model for many data...

Dictionary Learned by IID SDL

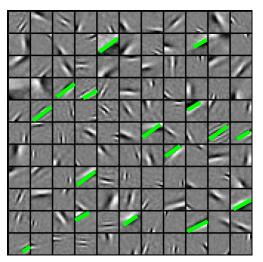
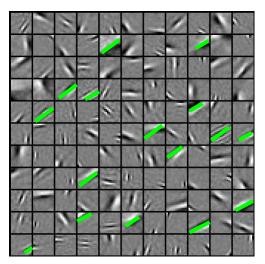


Image Credit : Olshausen & Field (1996)

- Highly redundant dictionary
- ➡ ⇒ Computationally and statistically inefficient

The wrong model for many data...

Dictionary Learned by IID SDL



Highly redundant dictionary

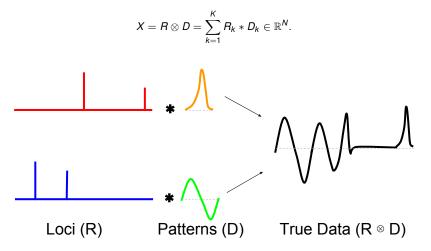
- ➡ ⇒ Computationally and statistically inefficient
- Linear combinations $(X \approx RD)$ lack translation invariance.

Not the right sparsity model!

Image Credit : Olshausen & Field (1996)

Multi-convolution

For $R \in \mathbb{R}^{(N-n+1) \times K}$ and $D \in \mathbb{R}^{n \times K}$:



CSDL Model and Goal

Suppose we observe $Y = X + \epsilon \in \mathbb{R}^N$, where $\epsilon \in \mathbb{R}^N$ is noise and

 $X=R\otimes D\in\mathbb{R}^N,$

for some fixed sparse $R \in \mathbb{R}^{(N-n+1) \times K}$ and $D \in \mathbb{R}^{n \times K}$.

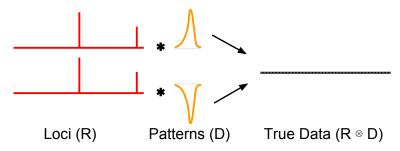
- Potential goals:
 - recover dictionary D
 - recover encoding R
 - recover true sequence $X = R \otimes D$
- We focus on recovering *X* (*reconstruction error*).

Why Reconstruction Error?

Applications to denoising and compression.

Why Reconstruction Error?

- Applications to denoising and compression.
- Recovering R and D requires potentially strong assumptions on D.



Our bounds for recovering *X* require almost no assumptions.

Some Notation

- **1** To ensure sparsity, assume $||\mathbf{R}||_{1,1} \leq \lambda$.
- **2** To fix scale, assume columns of *D* have at most unit \mathcal{L}_2 norm.

Problem Domain :

$$\mathcal{S}_{\lambda} = \left\{ (R, D) \in \mathbb{R}^{(N-n+1) \times K} \times \mathbb{R}^{n \times K} : \|R\|_{1,1} \leq \lambda, \|D\|_{2,\infty} \leq 1 \right\}.$$

Background:	Sparse	Dictionary	Learning	(SDL)

Upper Bounds

Upper Bound

Optimization Formulation

 $\widehat{X}_{\lambda} = \widehat{R}_{\lambda} \otimes \widehat{D}_{\lambda}$, where

$$\left(\widehat{R}_{\lambda}, \widehat{D}_{\lambda}\right) := \operatorname*{argmin}_{(R,D)\in\mathcal{S}_{\lambda}} \|Y - R \otimes D\|_{2}.$$

12/17

Background:	Sparse	Dictionary	Learning	(SDL)

Convolutional SDL

Upper Bounds

Upper Bound

Optimization Formulation

 $\widehat{X}_{\lambda} = \widehat{R}_{\lambda} \otimes \widehat{D}_{\lambda}$, where

$$\left(\widehat{R}_{\lambda},\widehat{D}_{\lambda}
ight):= \operatorname*{argmin}_{(R,D)\in\mathcal{S}_{\lambda}} \left\|Y-R\otimes D\right\|_{2}.$$

Theorem (Upper Bound)

Suppose

1
$$\lambda \ge \|R\|_{1,1}$$
.

2 the coordinates of $\epsilon \in \mathbb{R}^N$ are sub-Gaussian with constant σ .

Then,

$$\frac{1}{N} \mathop{\mathbb{E}}_{\epsilon} \left[\left\| X - \widehat{X}_{\lambda} \right\|_{2}^{2} \right] \leq \frac{4\lambda \sigma \sqrt{2n \log(2N)}}{N}$$

Lower Bound

Lower Bound

Theorem (Minimax Lower Bound)

There exists an independent noise pattern ϵ , which is sub-Gaussian with parameter σ , such that

$$\inf_{\widehat{X}} \sup_{(R,D)\in \mathcal{S}_{\lambda}} \frac{1}{N} \mathop{\mathbb{E}}_{\epsilon} \left[\left\| X - \widehat{X}_{\lambda} \right\|_{2}^{2} \right] \geq \frac{\lambda}{8N} \min \left\{ \lambda, \sigma \sqrt{\log(N - n + 1)} \right\}$$

In the extremely sparse/noisy setting where

$$\lambda \le \sigma \sqrt{\log(N - n + 1)},$$

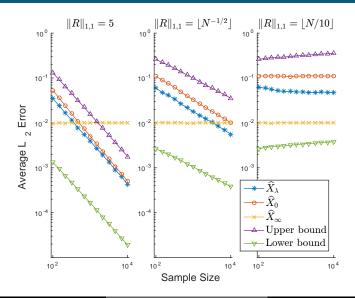
the trivial estimator $\widehat{X} = 0$ becomes optimal (with risk $\leq \lambda^2 / N$).

Convolutional SDL

Theoretical Results

Lower Bound

Simulation: Convergence Rates and Sparsity



Convolutional SDL

Theoretical Results

Lower Bound

Comparing upper and lower bounds

For

$$M(\lambda, \sigma, N, n) := \inf_{\widehat{X}} \sup_{(R,D) \in S_{\lambda}} \frac{1}{N} \mathbb{E} \left[\left\| X - \widehat{X}_{\lambda} \right\|_{2}^{2} \right],$$

we have (for $\lambda \geq \sigma \sqrt{\log(N - n + 1)}$):

Dependent Upper Bound:
$$M(\lambda, \sigma, N, n) \leq \frac{4\lambda\sigma\sqrt{2n\log(2N)}}{N}$$

Lower Bound:
$$M(\lambda, \sigma, N, n) \ge \frac{\lambda \sigma \sqrt{\log(N - n + 1)}}{8N}$$

Convolutional SDL

Theoretical Results

Lower Bound

Comparing upper and lower bounds

For

$$M(\lambda, \sigma, N, n) := \inf_{\widehat{X}} \sup_{(R,D) \in S_{\lambda}} \frac{1}{N} \mathbb{E} \left[\left\| X - \widehat{X}_{\lambda} \right\|_{2}^{2} \right],$$

we have (for $\lambda \geq \sigma \sqrt{\log(N - n + 1)}$):

Dependent Upper Bound:
$$M(\lambda, \sigma, N, n) \leq \frac{4\lambda\sigma\sqrt{2n\log(2N)}}{N}$$

Lower Bound:
$$M(\lambda, \sigma, N, n) \ge \frac{\lambda \sigma \sqrt{\log(N - n + 1)}}{8N}$$

Convolutional SDL

Theoretical Results

Lower Bound

Comparing upper and lower bounds

For

$$M(\lambda, \sigma, N, n) := \inf_{\widehat{X}} \sup_{(R,D) \in S_{\lambda}} \frac{1}{N} \mathbb{E} \left[\left\| X - \widehat{X}_{\lambda} \right\|_{2}^{2} \right],$$

we have (for $\lambda \geq \sigma \sqrt{\log(N - n + 1)}$):

Dependent Upper Bound:
$$M(\lambda, \sigma, N, n) \leq \frac{4\lambda\sigma\sqrt{2n\log(2N)}}{N}$$

Lower Bound:
$$M(\lambda, \sigma, N, n) \ge \frac{\lambda \sigma \sqrt{\log(N - n + 1)}}{8N}$$

Independent Upper Bound:
$$M(\lambda, \sigma, N, n) \leq \frac{4\lambda\sigma\sqrt{2}\log(2N)}{N}$$

Lower Bound

Independence of Noise

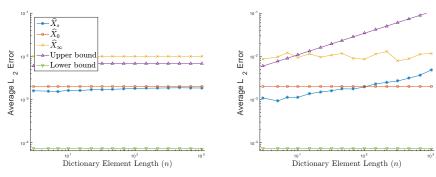


FIGURE – $\mathcal{N}(0, 0.1)$ Noise independent across signal

FIGURE - N(0, 0.1) Noise identical across signal

Theoretical Results ○000●0

Convolutional SDI

Lower Bound

Summary

- Many data exhibit convolutional sparsity
 - For these data, CSDL > SDL
- For fixed n, CSDL is guaranteed consistent (in reconstruction risk) if and only if

$$\frac{\lambda\sigma\sqrt{\log(N)}}{N}\to 0.$$

Role of dictionary length *n* depends on dependence pattern of noise

Lower Bound

Summary

- Many data exhibit convolutional sparsity
 - For these data, CSDL > SDL
- For fixed n, CSDL is guaranteed consistent (in reconstruction risk) if and only if

$$\frac{\lambda\sigma\sqrt{\log(N)}}{N}\to 0.$$

Role of dictionary length *n* depends on dependence pattern of noise

Thank you !

Appendix

Appendix

Theorem (Upper Bound with Independence)

Suppose

1 $\lambda \ge \|R\|_{1,1}$.

2 the coordinates of $\epsilon \in \mathbb{R}^N$ are sub-Gaussian with constant σ .

3 $\widehat{X}_{\lambda} = \widehat{R}_{\lambda} \otimes \widehat{D}_{\lambda}$, as previously.

Additionally, coordinates of ϵ are independent

Then,

$$\frac{1}{N} \mathbb{E}\left[\left\|X - \widehat{X}_{\lambda}\right\|_{2}^{2}\right] \leq \frac{4\lambda\sigma\sqrt{2\log(2N)}}{N}$$

Compare

$$\frac{1}{N} \mathbb{E}\left[\left\|X - \widehat{X}_{\lambda}\right\|_{2}^{2}\right] \leq \frac{4\lambda\sigma\sqrt{2n\log(2N)}}{N}$$

without independence assumption.