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Background: IID Sparse Dictionary Learning (SDL) Convolutional SDL Theoretical Results

Motivation

Sparsity is key to high-dimensional problems.

Many data have unknown sparse representations.

Sparse dictionary learning models data using sparse linear combinations.

Many data have different sparse structure.
Naturalistic data are often convolutionally sparse.

Consistent local patterns in different positions.
Images, speech, genomic data, etc.

Several benefits of incorporating this structure into the model :
Faster computation
Greater interpretability
Reduced error
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Background: IID Sparse Dictionary Learning (SDL)

Decompose data matrix X ∈ Rd×N into X ≈ DR, where
(a) Dictionary D ∈ Rd×K

(b) Encoding R ∈ RK×N is sparse

Example with N = 1:

dd

R
D X

K

Image Credit : Manchor Ko
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The wrong model for many data...

Example: IID SDL with Images

Images are locally sparse, but not globally sparse.
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The wrong model for many data...

Dictionary Learned by IID SDL

Image Credit : Olshausen & Field (1996)

Highly redundant dictionary

⇒ Computationally and
statistically inefficient

Linear combinations
(X ≈ RD) lack translation
invariance.

Not the right sparsity model!
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Multi-convolution

For R ∈ R(N−n+1)×K and D ∈ Rn×K :

X = R ⊗ D =
K∑

k=1

Rk ∗ Dk ∈ RN .

True Data (R ⊗ D)Patterns (D)Loci (R)

✱

✱
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CSDL Model and Goal

Suppose we observe Y = X + ε ∈ RN , where ε ∈ RN is noise and

X = R ⊗ D ∈ RN ,

for some fixed sparse R ∈ R(N−n+1)×K and D ∈ Rn×K .

Potential goals :
recover dictionary D
recover encoding R
recover true sequence X = R ⊗ D

We focus on recovering X (reconstruction error ).
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Why Reconstruction Error ?

Applications to denoising and compression.

Recovering R and D requires potentially strong assumptions on D.

True Data (R ⊗ D)Patterns (D)Loci (R)

✱

✱

Our bounds for recovering X require almost no assumptions.
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Some Notation

1 To ensure sparsity, assume ‖R‖1,1 ≤ λ.

2 To fix scale, assume columns of D have at most unit L2 norm.

Problem Domain :

Sλ =
{
(R,D) ∈ R(N−n+1)×K × Rn×K : ‖R‖1,1 ≤ λ, ‖D‖2,∞ ≤ 1

}
.
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Upper Bounds

Upper Bound

Optimization Formulation

X̂λ = R̂λ ⊗ D̂λ, where (
R̂λ, D̂λ

)
:= argmin

(R,D)∈Sλ
‖Y − R ⊗ D‖2 .

Theorem (Upper Bound)

Suppose

1 λ ≥ ‖R‖1,1.

2 the coordinates of ε ∈ RN are sub-Gaussian with constant σ.

Then,
1
N

E
ε

[∥∥∥X − X̂λ
∥∥∥2

2

]
≤

4λσ
√

2n log(2N)

N
.
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Lower Bound

Lower Bound

Theorem (Minimax Lower Bound)

There exists an independent noise pattern ε, which is sub-Gaussian with parameter σ,
such that

inf
X̂

sup
(R,D)∈Sλ

1
N

E
ε

[∥∥∥X − X̂λ
∥∥∥2

2

]
≥

λ

8N
min

{
λ, σ

√
log(N − n + 1)

}
.

In the extremely sparse/noisy setting where

λ ≤ σ
√

log(N − n + 1),

the trivial estimator X̂ = 0 becomes optimal (with risk ≤ λ2/N).
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Lower Bound

Simulation: Convergence Rates and Sparsity
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Lower Bound

Comparing upper and lower bounds

For

M(λ, σ,N, n) := inf
X̂

sup
(R,D)∈Sλ

1
N

E
[∥∥∥X − X̂λ

∥∥∥2

2

]
,

we have (for λ ≥ σ
√

log(N − n + 1)) :

Dependent Upper Bound: M(λ, σ,N, n) ≤
4λσ

√
2n log(2N)

N

Lower Bound: M(λ, σ,N, n) ≥
λσ
√

log(N − n + 1)
8N

Independent Upper Bound: M(λ, σ,N, n) ≤
4λσ

√
2 log(2N)

N
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Lower Bound

Independence of Noise

Dictionary Element Length (n)
10 1 10 2 10 3

A
ve

ra
ge

 L
2
 E

rr
or

10 -4

10 -3

10 -2

10 -1 bXsbX0bX1
Upper bound
Lower bound

FIGURE – N (0, 0.1) Noise independent across signal
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Lower Bound

Summary

Many data exhibit convolutional sparsity
For these data, CSDL > SDL

For fixed n, CSDL is guaranteed consistent (in reconstruction risk) if and only if

λσ
√

log(N)

N
→ 0.

Role of dictionary length n depends on dependence pattern of noise

Thank you !
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Upper Bound with Independence

Theorem (Upper Bound with Independence)

Suppose

1 λ ≥ ‖R‖1,1.

2 the coordinates of ε ∈ RN are sub-Gaussian with constant σ.

3 X̂λ = R̂λ ⊗ D̂λ, as previously.

4 Additionally, coordinates of ε are independent
Then,

1
N

E
[∥∥∥X − X̂λ

∥∥∥2

2

]
≤

4λσ
√

2 log(2N)

N
.

Compare
1
N

E
[∥∥∥X − X̂λ

∥∥∥2

2

]
≤

4λσ
√

2n log(2N)

N

without independence assumption.
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