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Contributions

1. New generalization of density estimation
• Besov IPMs – new losses motivated partly by GAN discriminators

2. New minimax rates under these losses
• Reduced curse of dimensionality

3. Many classical estimators are provably sub-optimal
• e.g., kernel density estimator
• gap increases with dimension

4. Certain GANs are minimax optimal

5. Besov IPMs also have important theoretical roles in math-stats.
• Unify several previous works in nonparametric density est.
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Density Estimation

• Observe n independent samples X1, ..., Xn ∼ P.
• Assume P ∈ P .
• Want to estimate P.
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GANs

P̂GAN := argmin
Q∈P︸ ︷︷ ︸

Generator

sup
f∈F︸︷︷︸

Discriminator

E
X∼Q

[f(X)]− E
X∼Pn

[f(X)] ,

Figure from http://www.lherranz.org/2018/08/07/imagetranslation/.
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GANs as Regularized ERM Density Estimators

P̂GAN := argmin
Q∈P

sup
f∈F

E
X∼Q

[f(X)]− E
X∼Pn

[f(X)]

= argmin
Q∈P

dF (Q,Pn)

Empirical Risk Minimization (ERM)

• Hypothesis class P
• Loss dF
• regularize data before feeding to GAN

• instance noise (Sønderby et al. (2017), ICLR)
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Integral Probability Metrics (IPMs)

• F – class of discriminator functions

The metric dF : P × P → [0,∞] is defined by

dF (P,Q) = sup
f∈F

∣∣∣∣ EX∼P [f(X)]− E
X∼Q

[f(X)]
∣∣∣∣ , for all P,Q ∈ P.
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Examples of IPMs

• 1-Wasserstein1

• Max. Mean Discrepancy (MMD)2

• Lr distances 3

• Kolmogorov-Smirnov
• Hilbert-Sobolev distances
• Besov distances
• Neural net distance (GANs)

1a.k.a. optimal transport or earthmover’s distance
2Including energy distances
3Including total variation distance
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Besov Spaces

• 2-parameter family of function spaces Bsp
• s ∈ (0,∞), p ∈ [1,∞]

For integer s
Bsp ≈ {f ∈ Lp : ∥f(s)∥p ≤ C}

where f(s) = sth derivative of f.

Examples:

Ex. 1: Lipschitz/Hölder spaces: Bs∞ ≈ Cs

Ex. 2: Sobolev spaces: Bs2 ≈ Hs
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Neural Network GANs

Ideal ERM:
argmin
Q∈P

dF (Q,Pn).

P and F are∞-dimensional... How to approximate?

ReLU Neural Networks (Suzuki (2019), ICLR):

Bsp ≈ Φ(L,W, S,B)

Φ(L,W, S,B) = class of fully-connected ReLU networks of size
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ReLU Neural Networks (Suzuki (2019), ICLR):

Bsp ≈ Φ(L,W, S,B)

Φ(L,W, S,B) = class of fully-connected ReLU networks of size:

• L = # of layers (depth)
• W = # neurons/layer (width)
• S = # nonzero weights/layer (sparsity)
• B = largest weight value
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Neural Network GANs

Ideal ERM:
argmin
Q∈P

dF (Q,Pn).

P and F are∞-dimensional... How to approximate?

ReLU Neural Networks (Suzuki (2019), ICLR):

Bsp ≈ Φ(L,W, S,B)

Φ(L,W, S,B) = class of fully-connected ReLU networks of size

L ∈ O(log n), W, S,B ∈ O(poly(n)).

P̂GAN = argmin
Q∈Φ(Lg,Wg,Sg,Bg)

dΦ(Ld,Wd,Sd,Bd)(Q,Pn).
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GANs are optimal∗∗∗

P̂GAN = argmin
Q∈Φ(Lg,Wg,Sg,Bg)

dΦ(Ld,Wd,Sd,Bd)(Q,Pn).

is optimal for estimating Besov distributions under Besov IPMs.

∗∗∗Caveats:

1. Well-optimized (maybe computationally challenging)
2. Well-tuned (neural network sizes)
3. Assumes fully-connected ReLU networks
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Summary

1. New generalization of density estimation
• Besov IPMs – new losses motivated partly by GAN discriminators

2. New minimax rates under these losses
• Reduced curse of dimensionality

3. Many classical estimators are provably sub-optimal
• e.g., kernel density estimator

4. Certain GANs are minimax optimal

5. Besov IPMs also have important theoretical roles in math. stats.
• Unify several previous works in nonparametric density est.

Poster #243 tonight
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Further Reading

• Liang, Tengyuan. (2019) “On how well generative adversarial
networks learn densities: Nonparametric and parametric
results.” arXiv

• Bauer & Kohler. “On deep learning as a remedy for the curse of
dimensionality in nonparametric regression.” Annals of
Statistics.

• Johannes Schmidt-Hieber. “Nonparametric regression using
deep neural networks with ReLU activation function.” Annals of
Statistics.



A Minimax Framework for Implicit Generative Modeling

Implicit generative model (sampler):

X̂ : X n︸︷︷︸
Training Data

× Z︸︷︷︸
Randomness

→ X︸︷︷︸
Novel Sample

Output distribution: conditional distribution PX̂(X1,...,Xn,Z)|X1,...,Xn of
novel sample Xn+1 given training data X1, ..., Xn.

Define the implicit risk of X̂ at P by

RI(P, X̂) := E
X1,...,Xn

IID∼P

[
ℓ(P,PX̂(X1,...,Xn,Z)|X1,...,Xn)

]
.



Implicit versus Explicit Generative Modeling

Theorem (When do good samplers imply good density estimators?)
Let FG be a family of probability distributions on a sample space X .
Suppose

1. Loss ℓ : P × P → [0,∞] satisfies a weak triangle inequality
2. MD(FG, ℓ,m) → 0 as m→ ∞. (i.e., there exists a uniformly
consistent density estimator)

3. we can draw arbitrarily many IID samples Z1, Z2, ... of the latent
variable Z

4. Output distributions of (nearly) minimax samplers lie in FG

Then, MD(FG, ℓ,n) ≲ MI(FG, ℓ,n).

Proof: Train a new density estimator P̂ with m IID samples drawn
from the sampler X̂. Then, R(P̂) ≤ R(X̂) + εm.
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