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Density Estimation

- Observe n independent samples X, ..., X, ~ P.
- Assume P € P.
- Want to estimate P.
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Training data

mﬁ @ﬁ Classify fake images vs real images

Discriminator (= veal/fake?

Latent vector z Generator -

Y - Backpropagation

Generate fake samples to fool the discriminator

Figure from http://www.lherranz.org/2018/08/07/imagetranslation/.
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mﬁ @ﬁ Classify fake images vs real images

Discriminator [ veal/fake?

Latent vector z Generator -

Y - Backpropagation

Generate fake samples to fool the discriminator

Pow = argmin  sup  E [0~ E [FX)],
QeP  feF X~ XeoPy
W v
Generator piscriminator
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GANs as Regularized ERM Density Estimators

Poan := argminsup E )= E [f(X)]
QeP feFX~Q X~Pn



GANs as Regularized ERM Density Estimators

Poan := argminsup E )= E [f(X)]
QeP feFX~Q X~Pn

d}'(Q;Pn)

=argmind£(Q, Py)
QeP

Empirical Risk Minimization (ERM)

- Hypothesis class P
- Loss dr

- regularize data before feeding to GAN
- instance noise (Sgnderby et al. (2017), ICLR)



Integral Probability Metrics (IPMs)

F - class of discriminator functions

The metricdz : P x P — [0, 0] is defined by

dx(P,Q) = sup
fE]-'

, forallP,Q e P.
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Integral Probability Metrics (IPMs)

- F - class of discriminator functions

The metricdz : P x P — [0, 0] is defined by

dx=(P,Q) = sup , forallP,Q e P.
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Examples of IPMs

- 1-Wasserstein'

- Max. Mean Discrepancy (MMD)?
- L" distances 3

- Kolmogorov-Smirnov

- Hilbert-Sobolev distances

- Besov distances

- Neural net distance (GANs)

Ta.k.a. optimal transport or earthmover's distance
%Including energy distances
3Including total variation distance
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* 2-parameter family of function spaces B;
- s€(0,00), pel,oq]

For integer s
By~ {feLl: |, <}

where fi8) = st derivative of f.

Examples:

Ex. 1: Lipschitz/Holder spaces: BS, ~ C°

Ex. 2: Sobolev spaces: B5 =~ H°®
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argmind £(Q, Py).
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P and F are oo-dimensional.. How to approximate?

RelLU Neural Networks (Suzuki (2019), ICLR):

BS ~ ®(L,W,S, B)

®(L, W, S, B) = class of fully-connected ReLU networks of size:

- L = # of layers (depth)
- W = # neurons/layer (width)
- S = # nonzero weights/layer (sparsity)

- B = largest weight value



Neural Network GANs

Ideal ERM:

argmin d=(Q, Pp).
QeP

P and F are oo-dimensional.. How to approximate?

RelLU Neural Networks (Suzuki (2019), ICLR):

BS ~ (L, W,S, B)

d(L,W, S, B) = class of fully-connected ReLU networks of size

L € O(logn), W, S, B € O(poly(n)).

Pean = argmin d‘b(Lde,Sde)(Q’ 'D”)'
QeP(Lg,Wg,Sg,B4)
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GANs are optimal**

Pean = argmin  do(,w,,5,,8,)(Q; Pn)-
Qed(Lg,Wg,Sg,B4)

is optimal for estimating Besov distributions under Besov IPMs.

***Caveats:

1. Well-optimized (maybe computationally challenging)
2. Well-tuned (neural network sizes)
3. Assumes fully-connected RelU networks



1. New generalization of density estimation
- Besov IPMs - new losses motivated partly by GAN discriminators

2. New minimax rates under these losses
- Reduced curse of dimensionality

3. Many classical estimators are provably sub-optimal
- eg, kernel density estimator

4. Certain GANs are minimax optimal

5. Besov IPMs also have important theoretical roles in math. stats.
- Unify several previous works in nonparametric density est.
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Further Reading

- Liang, Tengyuan. (2019) “On how well generative adversarial
networks learn densities: Nonparametric and parametric
results.” arXiv

- Bauer & Kohler. “On deep learning as a remedy for the curse of
dimensionality in nonparametric regression.” Annals of
Statistics.

- Johannes Schmidt-Hieber. “Nonparametric regression using
deep neural networks with ReLU activation function.” Annals of
Statistics.



A Minimax Framework for Implicit Generative Modeling

Implicit generative model (sampler):

X: X" x Z — X
~— — ~—
Training Data  Randomness Novel Sample

Output distribution: conditional distribution Prx of

novel sample X,1 given training data Xy, ..., X,.

1;"~7XH:Z)‘XW~,~~~an

Define the implicit risk of? at P by

R(PX):= E [E(P,P;
Xiyeeo Xn 0P

(XW ~~~~~ Xn,Z)lxw,...,Xn) :



Implicit versus Explicit Generative Modeling

Theorem (When do good samplers imply good density estimators?)
Let Fs be a family of probability distributions on a sample space X.

Suppose
1. Loss ¢ : P x P — [0, 00] satisfies a weak triangle inequality

2. Mp(Fs,€,m) — 0as m— oo. (i.e, there exists a uniformly
consistent density estimator)

3. we can draw arbitrarily many 11D samples 74, Z,, ... of the latent
variable 7

4. Qutput distributions of (nearly) minimax samplers lie in Fg

Then, MD(}_G,K,H) 5 M/(f@,f, n).



Implicit versus Explicit Generative Modeling

Theorem (When do good samplers imply good density estimators?)
Let Fs be a family o?probab/l/ty distributions on a sample space X.

Suppose

1. Loss ¢ : P x P — [0, 00] satisfies a weak triangle inequality

2. Mp(Fs,€,m) — 0as m— oo. (i.e, there exists a uniformly
consistent density estimator)

3. we can draw arbitrarily many IID samples 71,75, ... of the latent
variable 7

4. Qutput distributions of (nearly) minimax samplers lie in Fg
Then, MD(}-G,K, n) 5 M/(f@,f, n).

Proof: Train a new density estimator P with m 1D sam ples drawn

from the sampler X. Then, R(P) < R(;() + em.
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