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Motivation

Estimating dependence strength between variables is a fundamental ML problem.

Applications to. . .

feature selection [PLD05, SBD+16]

clustering [ASZAA07]

learning graphical models [CL68]

causal discovery [ZPJS11]

ICA and ISA [LMF03, SPL07]

EDA and unsupervised learning
[VSG16, VSGRG16, Ste17]

fMRI data analysis [CWBFF09]

protein structure prediction [Ada04]

boosting [SGM05]

fitting deep nonlinear models [HH16]

. . .

Note: We focus on continuous variables. . .
discrete case is quite different — see next talk.
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Information Estimation The Nonparanormal family Nonparanormal Information Estimation (Our Contributions)

Problem Statement

Multivariate Mutual Information

Mutual Information (a.k.a., total correlation [Wat60])
The mutual information of a D-dimensional random variable X = (X1, · · · ,XD) with
density p = p1 × · · · × pD is

I(X) := E
X∼p

[
log

(
p(x)∏D

j=1 pj (xj )

)]
= DKL

p,
D∏

j=1

pj

 ,

where DKL denotes KL divergence.

MI subsumes other information theoretic dependence measures

Pairwise mutual information: I(X ,Y ) = I((X ,Y ))− I(X)− I(Y )

Conditional mutual information: I(X |Z ) = I((X ,Z ))−
∑D

j=1 I((Xj ,Z )),

Transfer entropy (a.k.a. “directed information”) TX → Y between time series

Paper also discusses entropy estimation.
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Information Estimation The Nonparanormal family Nonparanormal Information Estimation (Our Contributions)

Problem Statement

The Information Estimation Problem

Given n IID observations X1, · · · ,Xn of X ∈ RD , estimate I(X).
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Information Estimation The Nonparanormal family Nonparanormal Information Estimation (Our Contributions)

What we know, and why it often doesn’t work

What do we know about information estimation ?

Given n IID observations X1, · · · ,Xn of X ∈ RD , estimate I(X).

Two cases have been studied:

Gaussian case:

X jointly Gaussian

[AG89, CLZ15]

Minimax MSE : 2D/n
Brittle – fails when data are

multi-modal
heavy-tailed
skewed
nonlinearly dependent
. . .

Nonparametric case:

X has s-times differentiable density

[BM95, L+96, SRH11, SWH13, SP14,
KKP+15, SP16, MSHI17]

Minimax MSE : � n−
8s

4s+D

fails when D is bigger than 4-6.

“All models are wrong but some are useful.” [Box79]

Often, neither model is useful!
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Information Estimation The Nonparanormal family Nonparanormal Information Estimation (Our Contributions)

Definition

The Nonparanormal Distribution

The Nonparanormal (a.k.a. Gaussian copula) Model [LLW09]
An RD-valued random variable X has a nonparanormal distribution X ∼ NPN (Σ; f )
if there exist f1, ..., fD : R→ R such that

f (X) = (f1(X1), ..., fD(XD)) ∼ N (0,Σ).

f is the marginal transformation and Σ is the latent covariance.
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Information Estimation The Nonparanormal family Nonparanormal Information Estimation (Our Contributions)

Motivation

The Nonparanormal Distribution : two perspectives

Generalized Gaussian with arbitrary
continuous marginals

Allows, e.g.,. . .
multi-modality
heavy-tails
skew
nonlinear dependence
. . .

“Additive” model of density estimation

Gaussian Nonparanormal Nonparametric

exp
(

xT Σx
) generalize⇒ exp

(
f T (x)Σf (x)

)
constrain⇐ exp (g(x))
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Information Estimation The Nonparanormal family Nonparanormal Information Estimation (Our Contributions)

How? (New Estimators)

Our Information Estimators

Basic Lemma
If X ∼ NPN (Σ; f ), then

I(X) = −
1
2

log |Σ|. (1)

Three latent correlation estimators :
Σ̂G : “Gaussianize” data and calculate empirical correlation
Σ̂ρ : Transform Spearman rank correlation matrix ρ
Σ̂τ : Transform Kendall rank correlation matrix τ

Want to plug Σ̂T (T ∈ {G, ρ, τ}) into (1) — but not necessarily positive definite!

Regularize Σ̂T to have minimum eigenvalue z > 0 (via projection)

Plug Σ̂T ,z into (1) :

ÎT ,z := −
1
2

log
∣∣∣Σ̂T ,z

∣∣∣
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Information Estimation The Nonparanormal family Nonparanormal Information Estimation (Our Contributions)

What do do we know about it? (Theory)

Theoretical Results

(Simplified) Upper Bound

Assuming z ≤ λD(Σ),

E
[(̂

Iρ,z − I
)2
]
≤

C
z2

D2

n
.

Lower Bound
There exists Cn,D > 0 such that

inf
Î

sup
λD(Σ)≥λ

E
[(̂

I − I
)2
]
≥ −C log2(λD(Σ)).

Constrast Gaussian case, where distribution of Î − I is independent of Σ.
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Information Estimation The Nonparanormal family Nonparanormal Information Estimation (Our Contributions)

Does it work? (Experiments)

Experimental Results

Synthetic data, with known ground truth

[IGK+17] studies applications to neural data analysis

We compare:
Optimal Gaussian estimator Î [CLZ15]
Our nonparanormal estimators ÎG, Îρ, Îτ
Classic nonparametric kNN estimator ÎkNN [KL87]
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Information Estimation The Nonparanormal family Nonparanormal Information Estimation (Our Contributions)

Does it work? (Experiments)

Experimental Results

Sample Size (log10(n))
1.5 2 2.5 3

lo
g
10
(M

S
E
)

-2

-1

0

1

2

3 Î

ÎG

Îρ

Îτ

ÎKNN

Truly Gaussian data, D = 25.
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Information Estimation The Nonparanormal family Nonparanormal Information Estimation (Our Contributions)

Does it work? (Experiments)

Experimental Results

non-Gaussian Fraction (α)
0 0.5 1

-1

0

1

2

3

Sample Size (log10(n))
1.5 2 2.5 3

lo
g
10
(M

S
E
)

-2

-1

0

1

2

3 Î

ÎG

Îρ

Îτ

ÎKNN

Gaussian data partially transformed by x 7→ ex , n = 100, D = 25.

Shashank Singh and Barnabás Póczos CMU Nonparanormal Information Estimation 8 August 2017, ICML, Sydney 13 / 15



Information Estimation The Nonparanormal family Nonparanormal Information Estimation (Our Contributions)

Does it work? (Experiments)

Experimental Results

Fraction of outliers (β)
0 0.2 0.4
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Sample Size (log10(n))
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lo
g
10
(M

S
E
)
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0
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2

3 Î

ÎG

Îρ

Îτ

ÎKNN

Gaussian data with random outliers ±5, n = 100, D = 25.
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Conclusions

See Poster #120

o(n)
o(n 1/2)

o(log n)

p(x) ∝ eg(x)

g(x) = xT᷿x

g(x) = fT(x)᷿f(x)

Figure: When can we estimate I(X) consistently?
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Entropy Estimation

H(X) =
D∑

j=1

H(Xj )− I(X)

Depends on marginals through H(X1), · · · ,H(XD).

Can estimate at O(D2/n) rate under mild smoothness assumptions on marginals.
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Theoretical Results : Lower Bounds

[CLZ15] recently that, in the Gaussian case, the distribution of Î− I is independent of Σ

Quite surprising, since I →∞ as λD(Σ)→ 0 !

We show this is not possible in the nonparanormal case. Specifically, there exists a
constant Cn,D such that

inf
Î

sup
λD(Σ)≥λ

E
[(̂

I − I
)]
≥ −C log2(λD(Σ)).
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The “Additive” Model of Density Estimation

g(x) =
D∑

j=1

fj (xj )

p(x) ∝ exp

 D∑
j=1

fj (xj )

 =
D∏

j=1

exp
(
fj (xj )

)

p(x) ∝ exp

 D∑
j,k=1

σk,j fj (xj )fk (xk )


= exp

(
f T (x)Σf (x)

)
.
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