
Introduction
Assumptions

Estimator
Theoretical Results

Consequences

Exponential Concentration Inequality
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Problem

Given α ∈ [0, 1) ∪ (1,∞), estimate the Rényi-α divergence

Dα(p‖q) =
1

α− 1 log
∫
X

pα(x)q1−α(x) dx ,

between two unknown, continuous, nonparametric probability
densities p and q over X = [0, 1]d , using n samples from each
density.
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Contribution

plug-in estimator of Rényi-α divergence based on kernel
density estimation
bound bias of the estimator
prove a concentration inequality
simple proof-of-concept experiment
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Motivation

‘distributional’ machine learning algorithms
finite-dimensional feature vectors → distribution features

KL-divergence, entropy, and mutual information special cases
applications to feature selection, clustering, ICA, etc.

with concentration inequality:
can simultaneously bound error of multiple estimates (e.g.,
forest density estimation)
can derive hypothesis test for independence
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Related Work

Few known rates
No estimators have concentration inequalities or other results
describing their distribution
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Kernel Assumptions

Smoothness (Hölder) Condition

Same assumptions on p and q.

β-Hölder condition on p:
β, L > 0, ` := bβc (so β − 1 ≤ ` < β)

All `-order (mixed) partial derivatives of p and q exist and

sup
x 6=y∈X
|~i |=`

|D~ip(x)− D~ip(y)|
‖x − y‖β−`r

≤ L.
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Boundedness

There exist known κ1, κ2 ∈ R such that, ∀x ∈ X ,

0 < κ1 ≤ p(x), q(x) ≤ κ2 < +∞.

Existence of κ2 is trivial, but our estimator requires it to be
known beforehand.
Assuming κ1 for q is natural (to ensure Dα(p‖q) < +∞).
κ1 for p is technical, and can be weakened/eliminated in
certain cases.
Reason for working on finite measure domain X = [0, 1]d .
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Boundary Condition

All derivatives of p vanish at the boundary; i.e.,

sup
1≤|~i |≤`

|D~ip(x)| → 0

as
dist(x , ∂X )→ 0.

Strong assumption, but needed to eliminate boundary bias.
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Kernel Assumptions

K : R→ R with support in [−1, 1] and satisfies∫ 1

−1
K (u) du = 1 and

∫ 1

−1
ujK (u) du = 0, ∀j ∈ {1, · · · , `}.
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Mirrored Kernel Density Estimate
Rényi-α Divergence Estimator

Mirrored Kernel Density Estimate

1 Mirror data x1, · · · , xn across all subsets of edges of X

2 Using a bandwidth h and product kernel Kd , compute kernel
density estimate (KDE) p̃ from resulting 3dn data points

Removes boundary bias because we assume derivatives of p
vanish near ∂X .

10/20



Introduction
Assumptions

Estimator
Theoretical Results

Consequences

Mirrored Kernel Density Estimate
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Rényi-α Divergence Estimator

1 Clip mirrored KDE below by κ1 and above by κ2

i.e., p̂(x) = min{κ2,max{κ1, p̃(x)}}.

2 Compute q̂ by the same process
3 Plug p̂, q̂ into Dα:

Dα(p̂‖q̂) =
1

α− 1 log
∫
X

p̂α(x)q̂1−α(x) dx .
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Bounds

Bias Bound: ∃CB ∈ R such that

|EDα(p̂‖q̂)− Dα(p‖q)| ≤ CB

(
hβ + h2β +

1
nhd

)
.

Concentration Inequality (‘Variance’ Bound): ∃CV ∈ R
such that, ∀ε > 0,

P (|Dα(p̂‖q̂)− EDα(p̂‖q̂)| > ε) ≤ 2 exp
(
−C2

V ε
2n
)
.
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Bias Bound

|EDα(p̂‖q̂)− Dα(p‖q)| ≤ CB

(
hβ + h2β +

1
nhd

)
.

Proof Sketch:
1 Main step is to analyze boundary bias of mirrored KDE:∫

X
(Ep̂(x)− p(x))2 dx ≤ Cbh2β.

2 Rest is a technical blend of standard proof techniques
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Concentration Inequality

P (|Dα(p̂‖q̂)− EDα(p̂‖q̂)| > ε) ≤ 2 exp
(
−C2

V ε
2n
)

Proof Sketch:

By McDiarmid’s Inequality, suffices to bound change in
estimator by CV /n when resampling one data point.
By Mean Value Theorem, change is proportional to integrated
change in mirrored KDE.
By construction of KDE, this is proportional to 2‖K‖d1/n.
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Consequences

Can bound variance by integrating concentration inequality:

V[Dα(p̂‖q̂)] ≤ C2
V n−1.

Choose bandwidth h to minimize bias bound asymptotically:
h � n−

1
β+d . Then,

Bias is O
(

n−
β

β+d

)
MSE is O

(
n−

2β
β+d + n−1

)
parametric rate O(n−1) if β ≥ d and slower O

(
n−

2β
β+d

)
else
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Experiment Results
Estimated divergence between two Gaussians in R3.

Figure : Log-log plot of empirical MSE alongside theoretical bound. Error
bars indicate standard deviation of estimator from 100 trials.
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Summary

Present an estimator of Rényi-α Divergence

Prove O
(

n−
β

β+d

)
bias bound

Prove exponential concentration of estimator
Experimentally verify results
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Future Work

1 Study role of dimension d
2 Prove concentration inequality for estimator of conditional

quantities
e.g., Conditional Mutual Information:

Iα(X ;Y |Z ) =

∫
Z

Dα (P(X ,Y |Z )‖P(X |Z )P(Y |Z )) dP(Z )

hypothesis test for conditional independence
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Thanks!
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