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Given a € [0,1) U (1, 00), estimate the Rényi-a divergence

Dalpla) =~ og [ 5 (x)a**(x) o

between two unknown, continuous, nonparametric probability
densities p and g over X = [0,1]9, using n samples from each
density.
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Contribution

@ plug-in estimator of Rényi-a divergence based on kernel
density estimation

bound bias of the estimator

prove a concentration inequality

simple proof-of-concept experiment
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Motivation

e 'distributional’ machine learning algorithms
o finite-dimensional feature vectors — distribution features

e Kl-divergence, entropy, and mutual information special cases
e applications to feature selection, clustering, ICA, etc.

@ with concentration inequality:

e can simultaneously bound error of multiple estimates (e.g.,
forest density estimation)
e can derive hypothesis test for independence
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Related Work

o Few known rates

@ No estimators have concentration inequalities or other results
describing their distribution

5/20
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Assumptions Density Assumptions

Kernel Assumptions

Smoothness (Holder) Condition

Same assumptions on p and gq.

(-Holder condition on p:
e B,L>0,¢:=|8] (soB—-1<{<p)
All ¢-order (mixed) partial derivatives of p and g exist and

|D'p(x) — D'p(y)|
xtyeX Ix —yllF™" ~

e
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Assumptions Density Assumptions

Kernel Assumptions

Boundedness

There exist known k1, k2 € R such that, Vx € X,

0 < k1 < p(x),q(x) < Ko < +o0.

o Existence of ky is trivial, but our estimator requires it to be
known beforehand.

@ Assuming k1 for g is natural (to ensure D, (p||q) < +0).

@ r1 for p is technical, and can be weakened/eliminated in
certain cases.

@ Reason for working on finite measure domain X' = [0,1]7.
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Kernel Assumptions

Boundary Condition

All derivatives of p vanish at the boundary; i.e.,

sup |Dp(x)| =0
1<[i]<e

as
dist(x,0X) — 0.
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Assumptions Density Assumptions

Kernel Assumptions

Boundary Condition

All derivatives of p vanish at the boundary; i.e.,

sup |Dp(x)| =0
1<[i]<e

as
dist(x,0X) — 0.

Strong assumption, but needed to eliminate boundary bias.
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Assumptions Density Assumptions

Kernel Assumptions

Kernel Assumptions

K : R — R with support in [—1,1] and satisfies

1 1
/K(u)duzl and /u’K(u)du:O, Vje{l,--- 0},
-1 -1
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X
. .
. .

@ Mirror data x!, .-, x" across all subsets of edges of X
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density estimate (KDE) p from resulting 3¢n data points
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Mirrored Kernel Density Estimate

X
xl
@ Mirror data x!, .-, x" across all subsets of edges of X

@ Using a bandwidth h and product kernel K9, compute kernel
density estimate (KDE) p from resulting 3¢n data points
e Removes boundary bias because we assume derivatives of p

vanish near 0X.
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Mirrored Kernel Density Estimate

Estimator Rényi-a Divergence Estimator

Rényi-a Divergence Estimator

@ Clip mirrored KDE below by 1 and above by k)

i.e,, p(x) = min{kp, max{k1, p(x)}}.
@ Compute g by the same process
© Plug p, g into D,:

1
a—1

Da(p)|d) = —— log /X PO (X)L (x) dx.
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Bounds

@ Bias Bound: 3Cg € R such that
511 1
[ED.(p]12) ~ Dalpla)] < Ca (W + 204 5 ).

e Concentration Inequality (‘Variance’ Bound): 3Cy € R
such that, Ve > 0,

P (|Da(p]|) — EDa(pl|3)] > €) < 2exp (—CPen).
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Bias Bound

. Concentration Inequalit
Theoretical Results : Y

Bias Bound

Alla 1
[ED.(p]) - Dalpla)] < Ca (H + 04— ).

Proof Sketch:
@ Main step is to analyze boundary bias of mirrored KDE:

/X (Ep(x) — p(x))? dx < Coh?”.

@ Rest is a technical blend of standard proof techniques
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P (|Da(p]) ~ EDa(pl|3)| > £) < 2exp (~CPen)
Proof Sketch:
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Concentration Inequality

P (|Da(p]) ~ EDa(pl|3)| > £) < 2exp (~CPen)

Proof Sketch:
@ By McDiarmid’s Inequality, suffices to bound change in
estimator by Cy//n when resampling one data point.

@ By Mean Value Theorem, change is proportional to integrated
change in mirrored KDE.
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Bias Bound

Theoretical Results Concentration Inequality

Concentration Inequality

P (|Da(p]) ~ EDa(pl|3)| > £) < 2exp (~CPen)

Proof Sketch:

@ By McDiarmid’s Inequality, suffices to bound change in
estimator by Cy//n when resampling one data point.

@ By Mean Value Theorem, change is proportional to integrated
change in mirrored KDE.

@ By construction of KDE, this is proportional to 2||K||{/n.
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Consequences

Consequences

@ Can bound variance by integrating concentration inequality:

V[Da(pl8)] < Cyn ™.
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Consequences

Consequences

@ Can bound variance by integrating concentration inequality:

V[Da(pl8)] < Cyn ™.

@ Choose bandwidth h to minimize bias bound asymptotically:
1
h =< n B+, Then,
e Biasis O (n_%)
e MSEis O (n_ﬂ% + nfl)

28
o parametric rate O(n~1) if 3 > d and slower O (n_m> else

15/20



Consequences

Experiment Results

Estimated divergence between two Gaussians in R3.

,Estimator MSE at various sample sizes
10° . : X

Empirical MSE
w't T, | T Theoretical MSE Bound

Mean squared error
3

15] 16‘ 10°
Number of data points (n)
Figure : Log-log plot of empirical MSE alongside theoretical bound. Error
bars indicate standard deviation of estimator from 100 trials.
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@ Present an estimator of Rényi-a Divergence
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@ Prove O (n 5+d) bias bound

@ Prove exponential concentration of estimator
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Consequences

Summary

Present an estimator of Rényi-a Divergence

B
Prove O (n_lﬂd) bias bound

Prove exponential concentration of estimator

Experimentally verify results
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Consequences

Future Work

@ Study role of dimension d

@ Prove concentration inequality for estimator of conditional
quantities

e e.g., Conditional Mutual Information:
(X ¥12) = [ Da (PX. YI2)IP(XI2)P(Y|2)) dP(2)
z

o hypothesis test for conditional independence
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Consequences

Thanks!
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