Exponential Concentration Inequality for a Rényi- α Divergence Estimator

Shashank Singh ¹ Barnabás Póczos ¹

June 22, 2014

¹Carnegie Mellon University, Pittsburgh, PA, USA $\leftarrow \square \rightarrow \leftarrow \square \rightarrow \leftarrow \square \rightarrow \leftarrow \square \rightarrow \rightarrow \square \rightarrow \square$

Problem Contribution Motivation Related Work

Problem

Given $\alpha \in [0,1) \cup (1,\infty)$, estimate the Rényi- α divergence

$$D_{\alpha}(p\|q) = rac{1}{lpha-1}\log\int_{\mathcal{X}}p^{lpha}(x)q^{1-lpha}(x)\,dx,$$

between two unknown, continuous, nonparametric probability densities p and q over $\mathcal{X} = [0, 1]^d$, using n samples from each density.

Problem Contribution Motivation Related Work

イロト 不得 トイヨト イヨト 三日

Contribution

- $\bullet\,$ plug-in estimator of Rényi- α divergence based on kernel density estimation
- bound bias of the estimator
- prove a concentration inequality
- simple proof-of-concept experiment

Problem Contribution Motivation Related Work

Motivation

- 'distributional' machine learning algorithms
 - $\bullet\,$ finite-dimensional feature vectors $\rightarrow\,$ distribution features

Problem Contribution Motivation Related Work

・ロット (四)・ (日)・ (日)・

Motivation

- 'distributional' machine learning algorithms
 - $\bullet\,$ finite-dimensional feature vectors $\rightarrow\,$ distribution features
- KL-divergence, entropy, and mutual information special cases
 - applications to feature selection, clustering, ICA, etc.

Problem Contribution Motivation Related Work

Motivation

- 'distributional' machine learning algorithms
 - $\bullet\,$ finite-dimensional feature vectors $\rightarrow\,$ distribution features
- KL-divergence, entropy, and mutual information special cases
 - applications to feature selection, clustering, ICA, etc.
- with concentration inequality:
 - can simultaneously bound error of multiple estimates (e.g., forest density estimation)
 - can derive hypothesis test for independence

Problem Contribution Motivation Related Work

Related Work

- Few known rates
- No estimators have concentration inequalities or other results describing their distribution

Density Assumptions Kernel Assumptions

Smoothness (Hölder) Condition

Same assumptions on p and q.

Density Assumptions Kernel Assumptions

Smoothness (Hölder) Condition

Same assumptions on p and q.

 β -Hölder condition on p:

• $\beta, L > 0, \ \ell := \lfloor \beta \rfloor \ (\text{so } \beta - 1 \leq \ell < \beta)$

All ℓ -order (mixed) partial derivatives of p and q exist and

$$\sup_{\substack{x\neq y\in\mathcal{X}\\|\vec{i}|=\ell}}\frac{|D^{\vec{i}}p(x)-D^{\vec{i}}p(y)|}{\|x-y\|_{r}^{\beta-\ell}}\leq L.$$

Density Assumptions Kernel Assumptions

Boundedness

There exist known $\kappa_1, \kappa_2 \in \mathbb{R}$ such that, $\forall x \in \mathcal{X}$,

$$0 < \kappa_1 \leq p(x), q(x) \leq \kappa_2 < +\infty.$$

- *Existence* of κ_2 is trivial, but our estimator requires it to be *known* beforehand.
- Assuming κ_1 for q is natural (to ensure $D_{\alpha}(p||q) < +\infty$).
- κ_1 for p is technical, and can be weakened/eliminated in certain cases.
- Reason for working on finite measure domain $\mathcal{X} = [0, 1]^d$.

Density Assumptions Kernel Assumptions

イロト 不得 トイヨト イヨト 三日

Boundary Condition

All derivatives of p vanish at the boundary; i.e.,

$$\sup_{1\leq |\vec{i}|\leq \ell} |D^{\vec{i}}p(x)| \to 0$$

as

 $\mathsf{dist}(x,\partial\mathcal{X})\to 0.$

Density Assumptions Kernel Assumptions

Boundary Condition

All derivatives of p vanish at the boundary; i.e.,

$$\sup_{1\leq |\vec{i}|\leq \ell} |D^{\vec{i}}p(x)| \to 0$$

as

$$dist(x, \partial \mathcal{X}) \rightarrow 0.$$

Strong assumption, but needed to eliminate boundary bias.

Density Assumptions Kernel Assumptions

Kernel Assumptions

$\mathcal{K}:\mathbb{R}\rightarrow\mathbb{R}$ with support in [-1,1] and satisfies

$$\int_{-1}^1 K(u) \, du = 1 \quad \text{and} \quad \int_{-1}^1 u^j K(u) \, du = 0, \quad \forall j \in \{1, \cdots, \ell\}.$$

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ● ●

Mirrored Kernel Density Estimate

1 Mirror data x^1, \dots, x^n across all subsets of edges of \mathcal{X}

Mirrored Kernel Density Estimate

Mirror data x¹,..., xⁿ across all subsets of edges of X
Using a bandwidth h and product kernel K^d, compute kernel density estimate (KDE) p̃ from resulting 3^d n data points

Mirrored Kernel Density Estimate Rényi- α Divergence Estimator

Mirrored Kernel Density Estimate

- Mirror data x¹,...,xⁿ across all subsets of edges of X
 Using a bandwidth h and product kernel K^d, compute kernel density estimate (KDE) p̃ from resulting 3^d n data points
 - Removes boundary bias because we assume derivatives of pvanish near $\partial \mathcal{X}$.

Mirrored Kernel Density Estimate Rényi- α Divergence Estimator

Rényi- α Divergence Estimator

1 Clip mirrored KDE below by κ_1 and above by κ_2

i.e.,
$$\hat{p}(x) = \min\{\kappa_2, \max\{\kappa_1, \widetilde{p}(x)\}\}.$$

$$D_{\alpha}(\hat{p}\|\hat{q}) = rac{1}{lpha-1}\log\int_{\mathcal{X}}\hat{p}^{lpha}(x)\hat{q}^{1-lpha}(x)\,dx.$$

Bias Bound Concentration Inequality

Bounds

• Bias Bound: $\exists C_B \in \mathbb{R}$ such that

$$|\mathbb{E} D_lpha(\hat{p}\|\hat{q}) - D_lpha(p\|q)| \leq C_B\left(h^eta + h^{2eta} + rac{1}{nh^d}
ight).$$

 Concentration Inequality ('Variance' Bound): ∃C_V ∈ ℝ such that, ∀ε > 0,

$$\mathbb{P}\left(|D_{lpha}(\hat{p}\|\hat{q})-\mathbb{E}D_{lpha}(\hat{p}\|\hat{q})|>arepsilon
ight)\leq 2\exp\left(-C_V^2arepsilon^2n
ight).$$

Bias Bound Concentration Inequality

Bias Bound

$$|\mathbb{E} D_lpha(\hat{\pmb{
ho}}\|\hat{\pmb{q}}) - D_lpha(\pmb{
ho}\|\pmb{q})| \leq C_B\left(h^eta+h^{2eta}+rac{1}{nh^d}
ight).$$

Proof Sketch:

1 Main step is to analyze boundary bias of mirrored KDE:

$$\int_{\mathcal{X}} (\mathbb{E}\hat{p}(x) - p(x))^2 \, dx \leq C_b h^{2\beta}.$$

Rest is a technical blend of standard proof techniques

Bias Bound Concentration Inequality

Concentration Inequality

$$\mathbb{P}\left(|D_lpha(\hat{\pmb{p}}\|\hat{\pmb{q}}) - \mathbb{E} D_lpha(\hat{\pmb{p}}\|\hat{\pmb{q}})| > arepsilon
ight) \leq 2\exp\left(-C_V^2arepsilon^2 n
ight)$$

Proof Sketch:

Bias Bound Concentration Inequality

・ロット (四)・ (日)・ (日)・

Concentration Inequality

$$\mathbb{P}\left(|D_lpha(\hat{\pmb{
ho}}\|\hat{\pmb{q}}) - \mathbb{E} D_lpha(\hat{\pmb{
ho}}\|\hat{\pmb{q}})| > arepsilon
ight) \leq 2\exp\left(-C_V^2arepsilon^2 n
ight)$$

Proof Sketch:

• By McDiarmid's Inequality, suffices to bound change in estimator by C_V/n when resampling one data point.

Bias Bound Concentration Inequality

・ロット (四)・ (日)・ (日)・

Concentration Inequality

$$\mathbb{P}\left(|D_{\alpha}(\hat{p}\|\hat{q}) - \mathbb{E}D_{\alpha}(\hat{p}\|\hat{q})| > \varepsilon\right) \leq 2\exp\left(-C_V^2\varepsilon^2n\right)$$

Proof Sketch:

- By McDiarmid's Inequality, suffices to bound change in estimator by C_V/n when resampling one data point.
- By Mean Value Theorem, change is proportional to integrated change in mirrored KDE.

Bias Bound Concentration Inequality

Concentration Inequality

$$\mathbb{P}\left(|D_{lpha}(\hat{
ho}\|\hat{q}) - \mathbb{E}D_{lpha}(\hat{
ho}\|\hat{q})| > arepsilon
ight) \leq 2\exp\left(-C_V^2arepsilon^2 n
ight)$$

Proof Sketch:

- By McDiarmid's Inequality, suffices to bound change in estimator by C_V/n when resampling one data point.
- By Mean Value Theorem, change is proportional to integrated change in mirrored KDE.
- By construction of KDE, this is proportional to $2||K||_1^d/n$.

• Can bound variance by integrating concentration inequality:

$\mathbb{V}[D_{lpha}(\hat{p}\|\hat{q})] \leq C_V^2 n^{-1}.$

• Can bound variance by integrating concentration inequality: $\mathbb{V}[D_{\alpha}(\hat{p}||\hat{q})] \leq C_{V}^{2} n^{-1}.$

 Choose bandwidth h to minimize bias bound asymptotically: h ≍ n^{-1/β+d}. Then,
 Bias is O (n^{-β/β+d})

• MSE is
$$O\left(n^{-\frac{2\beta}{\beta+d}} + n^{-1}\right)$$

• parametric rate $O(n^{-1})$ if $\beta \ge d$ and slower $O\left(n^{-\frac{2\beta}{\beta+d}}\right)$ else

Experiment Results

Estimated divergence between two Gaussians in \mathbb{R}^3 .

Figure : Log-log plot of empirical MSE alongside theoretical bound. Error bars indicate standard deviation of estimator from 100 trials.

• Present an estimator of Rényi- α Divergence

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

• Present an estimator of Rényi-
$$\alpha$$
 Divergence
• Prove $O\left(n^{-\frac{\beta}{\beta+d}}\right)$ bias bound

 $\bullet\,$ Present an estimator of Rényi- $\alpha\,$ Divergence

• Prove
$$O\left(n^{-\frac{\beta}{\beta+d}}\right)$$
 bias bound

• Prove exponential concentration of estimator

 $\bullet\,$ Present an estimator of Rényi- $\alpha\,$ Divergence

• Prove
$$O\left(n^{-\frac{\beta}{\beta+d}}\right)$$
 bias bound

• Prove exponential concentration of estimator

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Experimentally verify results

Future Work

- **①** Study role of dimension d
- Prove concentration inequality for estimator of *conditional* quantities
 - e.g., Conditional Mutual Information:

$$I_{\alpha}(X;Y|Z) = \int_{\mathcal{Z}} D_{\alpha} \left(P(X,Y|Z) \| P(X|Z) P(Y|Z) \right) \, dP(Z)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• hypothesis test for conditional independence

Thanks!

References

- *f*-Divergence estimation:
 - Nguyen, X., Wainwright, M.J., and Jordan., M.I. Estimating divergence functionals and the likelihood ratio by convex risk minimization. *IEEE Transactions on Information Theory*, 2010.
- k-NN estimation:
 - Poczos, B. and Schneider, J. On the estimation of alpha-divergences. In *International Conference on AI and Statistics (AISTATS)*, volume 15 of JMLR Workshop and Conference Proceedings, pp. 609-617, 2011.
- Lower bounds for single-density functional estimation:
 - Birge, L. and Massart, P. Estimation of integral functions of a density. *The Annals of Statistics*, 23:11-29, 1995.
- Distributional Machine Learning:
 - Oliva, J., Poczos, B., and Schneider, J. Distribution to distribution regression. In *International Conference on Machine Learning (ICML)*, 2013.